Название исследуемой задачи: | Использование предикаторной функции для построения ансамбля нейросетей |
---|---|
Тип научной работы: | M1P |
Автор: | Уденеев Александр Владимирович |
Научный руководитель: | Бахтеев Олег |
Научный консультант(при наличии): | Бабкин Петр |
The automated search for optimal neural network architectures (NAS) is a challenging compu- tational problem, and Neural Ensemble Search (NES) is even more complex. In this work, we propose a surrogate-based approach for ensebmle creation. Neural architectures are represented as graphs, and their predictions on a dataset serve as training data for the surrogate function. Using this function, we develop an efficient NES framework that enables the selection of diverse and high-performing architectures. The resulting ensemble achieves superior predictive accuracy on CIFAR-10 compared to other one-shot NES methods, demonstrating the effectiveness of our approach.
Keywords: NES, GCN, triplet loss, surrogate function