Skip to content

Add effective DOS classes for the Charge solver #2375

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions tidy3d/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,13 +52,17 @@
from tidy3d.components.tcad.types import (
AugerRecombination,
CaugheyThomasMobility,
ConstantEffectiveDOS,
ConstantMobilityModel,
ConvectionBC,
CurrentBC,
DualValleyEffectiveDOS,
HeatFluxBC,
HeatFromElectricSource,
HeatSource,
InsulatingBC,
IsotropicEffectiveDOS,
MultiValleyEffectiveDOS,
RadiativeRecombination,
ShockleyReedHallRecombination,
SlotboomBandGapNarrowing,
Expand Down Expand Up @@ -606,6 +610,10 @@ def set_logging_level(level: str) -> None:
"SteadyCapacitanceData",
"CaugheyThomasMobility",
"ConstantMobilityModel",
"ConstantEffectiveDOS",
"IsotropicEffectiveDOS",
"MultiValleyEffectiveDOS",
"DualValleyEffectiveDOS",
"SlotboomBandGapNarrowing",
"ShockleyReedHallRecombination",
"FossumCarrierLifetime",
Expand Down
5 changes: 3 additions & 2 deletions tidy3d/components/material/tcad/charge.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from tidy3d.components.tcad.doping import DopingBoxType
from tidy3d.components.tcad.types import (
BandGapNarrowingModelType,
EffectiveDOSModelType,
MobilityModelType,
RecombinationModelType,
)
Expand Down Expand Up @@ -256,14 +257,14 @@ class SemiconductorMedium(AbstractChargeMedium):

"""

N_c: pd.PositiveFloat = pd.Field(
N_c: Union[pd.PositiveFloat, EffectiveDOSModelType] = pd.Field(
...,
title="Effective density of electron states",
description=r"$N_c$ Effective density of states in the conduction band.",
units="cm^(-3)",
)

N_v: pd.PositiveFloat = pd.Field(
N_v: Union[pd.PositiveFloat, EffectiveDOSModelType] = pd.Field(
...,
title="Effective density of hole states",
description=r"$N_v$ Effective density of states in the valence band.",
Expand Down
158 changes: 158 additions & 0 deletions tidy3d/components/tcad/effective_DOS.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
from abc import ABC, abstractmethod

import numpy as np
import pydantic.v1 as pd

from tidy3d.components.base import Tidy3dBaseModel
from tidy3d.constants import C_0, HBAR, K_B

from ...exceptions import DataError

# constants definition
m_e_C_square = 0.51099895069e6 # (electron mass * C_0^2) in eV
m_e_eV = 0.51099895069e6 / C_0 / C_0 # equivalent electron mass in eV
um_3_to_cm_3 = 1e12 # conversion factor from micron^(-3) to cm^(-3)

DOS_aux_const = 2.0 * np.power((m_e_eV * K_B) / (2 * np.pi * HBAR * HBAR), 1.5) * um_3_to_cm_3


class EffectiveDOS(Tidy3dBaseModel, ABC):
"""Abstract class for the effective density of states"""

@abstractmethod
def _calc_eff_DOS(self, T: float):
"""Abstract method to calculate the effective density of states."""
pass

@abstractmethod
def _calc_eff_DOS_derivative(self, T: float):
"""Abstract method to calculate the temperature derivative of the effective density of states."""
pass

def get_effective_DOS(self, T: float):
if T <= 0:
raise DataError(
f"Incorrect temperature value ({T}) for the effectve density of states calculation."
)

return self._calc_eff_DOS(T)

def get_effective_DOS_derivative(self, T: float):
if T <= 0:
raise DataError(
f"Incorrect temperature value ({T}) for the effectve density of states calculation."
)

return self._calc_eff_DOS_derivative(T)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

not sure we'll need these here since we formulation is in the back-end. We can leave them there for now though. We can decide once we know how this all will play out in the back-end.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So far I added the temperature derivative for experimentation with the non-isothermal simulations. We should think about the final implementation later together with the model development.



class ConstantEffectiveDOS(EffectiveDOS):
"""Constant effective density of states model."""

N: pd.PositiveFloat = pd.Field(
..., title="Effective DOS", description="Effective density of states", units="cm^(-3)"
)

def _calc_eff_DOS(self, T: float):
return self.N

def _calc_eff_DOS_derivative(self, T: float):
return 0.0


class IsotropicEffectiveDOS(EffectiveDOS):
"""Effective density of states model that assumes single valley and isotropic effective mass.
The model assumes the standard equation for the 3D semiconductor with parabolic energy dispersion:

.. math::

\\begin{equation}
\\mathbf{N_eff} = 2 * (\\frac{m_eff * m_e * k_B T}{2 \\pi \\hbar^2})^(3/2)
\\end{equation}
"""

m_eff: pd.PositiveFloat = pd.Field(
...,
title="Effective mass",
description="Effective mass of the carriers",
units="Electron mass",
)

def _calc_eff_DOS(self, T: float):
return np.power(self.m_eff * T, 1.5) * DOS_aux_const

def _calc_eff_DOS_derivative(self, T: float):
return self._calc_eff_DOS(T) * 1.5 / T


class MultiValleyEffectiveDOS(EffectiveDOS):
"""Effective density of states model that assumes multiple equivalent valleys and anisotropic effective mass.
The model assumes the standard equation for the 3D semiconductor with parabolic energy dispersion:

.. math::

\\begin{equation}
\\mathbf{N_eff} = 2 * N_valley (\\frac{(m_{eff_long} * m_{eff_trans} * m_{eff_trans})^(1/2) * m_e * k_B * T}{2 \\pi * \\hbar^2})^(3/2)
\\end{equation}
"""

m_eff_long: pd.PositiveFloat = pd.Field(
...,
title="Longitudinal effective mass",
description="Effective mass of the carriers in the longitudinal direction",
units="Electron mass",
)

m_eff_trans: pd.PositiveFloat = pd.Field(
...,
title="Longitudinal effective mass",
description="Effective mass of the carriers in the transverse direction",
units="Electron mass",
)

N_valley: pd.PositiveFloat = pd.Field(
..., title="Number of valleys", description="Number of effective valleys"
)

def _calc_eff_DOS(self, T: float):
return (
self.N_valley
* np.power(self.m_eff_long * self.m_eff_trans * self.m_eff_trans, 0.5)
* np.power(T, 1.5)
* DOS_aux_const
)

def _calc_eff_DOS_derivative(self, T: float):
return self._calc_eff_DOS(T) * 1.5 / T


class DualValleyEffectiveDOS(EffectiveDOS):
"""Effective density of states model that assumes combibation of light holes and heavy holes with isotropic effective masses.
The model assumes the standard equation for the 3D semiconductor with parabolic energy dispersion:

.. math::

\\begin{equation}
\\mathbf{N_eff} = 2 * ( {\\frac{m_{eff_lh} * m_e * k_B * T}{2 \\pi \\hbar^2})^(3/2) + (\\frac{m_{eff_hh} * m_e * k_B * T}{2 \\pi \\hbar^2})^(3/2) )
\\end{equation}
"""

m_eff_lh: pd.PositiveFloat = pd.Field(
...,
title="Light hole effective mass",
description="Effective mass of the light holes",
units="Electron mass",
)

m_eff_hh: pd.PositiveFloat = pd.Field(
...,
title="Heavy hole effective mass",
description="Effective mass of the heavy holes",
units="Electron mass",
)

def _calc_eff_DOS(self, T: float):
return (np.power(self.m_eff_lh * T, 1.5) + np.power(self.m_eff_hh * T, 1.5)) * DOS_aux_const

def _calc_eff_DOS_derivative(self, T: float):
return self._calc_eff_DOS(T) * 1.5 / T
9 changes: 9 additions & 0 deletions tidy3d/components/tcad/types.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,12 @@
from tidy3d.components.tcad.bandgap import SlotboomBandGapNarrowing
from tidy3d.components.tcad.boundary.charge import CurrentBC, InsulatingBC, VoltageBC
from tidy3d.components.tcad.boundary.heat import ConvectionBC, HeatFluxBC, TemperatureBC
from tidy3d.components.tcad.effective_DOS import (
ConstantEffectiveDOS,
DualValleyEffectiveDOS,
IsotropicEffectiveDOS,
MultiValleyEffectiveDOS,
)
from tidy3d.components.tcad.generation_recombination import (
AugerRecombination,
RadiativeRecombination,
Expand All @@ -19,6 +25,9 @@
from tidy3d.components.tcad.source.heat import HeatSource, UniformHeatSource
from tidy3d.components.types import Union

EffectiveDOSModelType = Union[
ConstantEffectiveDOS, IsotropicEffectiveDOS, MultiValleyEffectiveDOS, DualValleyEffectiveDOS
]
MobilityModelType = Union[CaugheyThomasMobility, ConstantMobilityModel]
RecombinationModelType = Union[
AugerRecombination, RadiativeRecombination, ShockleyReedHallRecombination
Expand Down