This repository was archived by the owner on Apr 13, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_norm.py
88 lines (68 loc) · 2.19 KB
/
eval_norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 8 16:31:20 2021
@author: Eric
"""
from model import Unet
import torch
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torchvision.utils import save_image
import os
import glob
import numpy as np
from tqdm import tqdm
from time import sleep
from PIL import Image
import matplotlib.pyplot as plt
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#%%
PATH_CHK = "checkpoints/norm/norm_net_epoch_020.pth"
DIR_EVAL = "test"
CROP = 1024
#%%
transform = transforms.Compose([
transforms.Resize(CROP),
transforms.CenterCrop(CROP),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) # (input - mean) / std
# outputs range from -1 to 1
])
class TestDataset(Dataset):
def __init__(self, img_dir):
self.file_list = glob.glob(img_dir+"/*.jpg")
self.names = [os.path.splitext(os.path.basename(fp))[0] for fp in self.file_list]
def __len__(self):
return len(self.names)
def __getitem__(self, i):
img = Image.open(self.file_list[i]).convert('RGB')
img = transform(img)
return img, self.names[i]
#%% test
def test(net, in_folder, out_folder):
output_normal = os.path.join(out_folder, "output")
if not os.path.exists(output_normal):
os.makedirs(output_normal)
data_test = TestDataset(in_folder)
# print(batch_size)
testloader = DataLoader(data_test, batch_size=1, shuffle=False)
print("\nOutput test files...")
net.eval()
with torch.no_grad():
for idx, data in enumerate(testloader):
img_in = data[0].to(device)
img_out = net(img_in)
# print(img_name)
img_out_filename = os.path.join(output_normal, f"{data[1][0]}.png")
save_image(img_out, img_out_filename, value_range=(-1,1), normalize=True)
print("Done!")
#%%
def main():
input_folder = os.path.join(DIR_EVAL, "input")
norm_net = Unet().to(device)
checkpoint = torch.load(PATH_CHK)
norm_net.load_state_dict(checkpoint["model"])
test(norm_net, input_folder, DIR_EVAL)
if __name__ == "__main__":
main()