-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtestnumba.py
49 lines (35 loc) · 816 Bytes
/
testnumba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from numba import njit
import random
import time
@njit
def monte_carlo_pi(nsamples):
acc = 0
for i in range(nsamples):
x = random.random()
y = random.random()
if (x ** 2 + y ** 2) < 1.0:
acc += 1
return 4.0 * acc / nsamples
@njit
def addVector(x,y):
z = []
for i in range(len(x)):
z.append(x[i]+y[i])
# z[i] = x[i]+y[i]
return z
import numpy as np
@njit
def addVectorN(x,y):
return x+y
size = 10000000
x = [random.randint(10,20) for i in range(size)]
y = [random.randint(10,20) for i in range(size)]
start = time.time()
z = addVector(x,y)
print("Lista- %f"%(time.time()-start))
x = np.array(x)
y = np.array(y)
start = time.time()
z = addVectorN(x,y)
print("Numpy- %f"%(time.time()-start))
#print(monte_carlo_pi(100000000))