|
| 1 | +from hack import hack |
| 2 | +hack() |
| 3 | + |
| 4 | +from keras import models |
| 5 | +from keras import layers |
| 6 | + |
| 7 | +model = models.Sequential() |
| 8 | + |
| 9 | +model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) |
| 10 | +model.add(layers.MaxPooling2D(2, 2)) |
| 11 | + |
| 12 | +model.add(layers.Conv2D(64, (3, 3), activation='relu')) |
| 13 | +model.add(layers.MaxPooling2D(2, 2)) |
| 14 | + |
| 15 | +model.add(layers.Conv2D(128, (3,3), activation='relu')) |
| 16 | +model.add(layers.MaxPooling2D(2, 2)) |
| 17 | + |
| 18 | +model.add(layers.Conv2D(128, (3,3), activation='relu')) |
| 19 | +model.add(layers.MaxPooling2D(2, 2)) |
| 20 | + |
| 21 | +model.add(layers.Flatten()) |
| 22 | + |
| 23 | +model.add(layers.Dropout(0.5)) |
| 24 | + |
| 25 | +model.add(layers.Dense(512, activation='relu')) |
| 26 | +model.add(layers.Dense(1, activation='sigmoid')) |
| 27 | + |
| 28 | +model.summary() |
| 29 | + |
| 30 | +from keras import optimizers |
| 31 | + |
| 32 | +model.compile(optimizer=optimizers.RMSprop(lr=1e-4), |
| 33 | + loss='binary_crossentropy', |
| 34 | + metrics=['acc']) |
| 35 | + |
| 36 | +import os |
| 37 | + |
| 38 | +base_dir = '../catsdogssmall' |
| 39 | +train_dir = os.path.join(base_dir, 'train') |
| 40 | +test_dir = os.path.join(base_dir, 'test') |
| 41 | + |
| 42 | +from keras.preprocessing.image import ImageDataGenerator |
| 43 | + |
| 44 | +train_datagen = ImageDataGenerator( |
| 45 | + height_shift_range=0.2, |
| 46 | + horizontal_flip=True, |
| 47 | + rescale=1./255, |
| 48 | + rotation_range=40, |
| 49 | + shear_range=0.2, |
| 50 | + width_shift_range=0.2, |
| 51 | + zoom_range=0.2) |
| 52 | + |
| 53 | +test_datagen = ImageDataGenerator(rescale=1./255) |
| 54 | + |
| 55 | +train_generator = train_datagen.flow_from_directory( |
| 56 | + train_dir, |
| 57 | + target_size=(150, 150), |
| 58 | + batch_size=20, |
| 59 | + class_mode='binary') |
| 60 | + |
| 61 | +validation_generator = test_datagen.flow_from_directory( |
| 62 | + test_dir, |
| 63 | + target_size=(150, 150), |
| 64 | + batch_size=20, |
| 65 | + class_mode='binary') |
| 66 | + |
| 67 | +for data_batch, labels_batch in train_generator: |
| 68 | + print('data batch shape:', data_batch.shape) |
| 69 | + print('labels batch shape:', labels_batch.shape) |
| 70 | + break |
| 71 | + |
| 72 | +history = model.fit_generator( |
| 73 | + train_generator, |
| 74 | + steps_per_epoch=100, |
| 75 | + epochs=10, |
| 76 | + validation_data=validation_generator, |
| 77 | + validation_steps=50) |
| 78 | + |
| 79 | +model.save('cats_and_dogs_small.h5') |
| 80 | + |
| 81 | +import matplotlib.pyplot as plt |
| 82 | + |
| 83 | +acc = history.history['acc'] |
| 84 | +val_acc = history.history['val_acc'] |
| 85 | +loss = history.history['loss'] |
| 86 | +val_loss = history.history['val_loss'] |
| 87 | + |
| 88 | +epochs = range(1, len(acc) + 1) |
| 89 | + |
| 90 | +plt.plot(epochs, acc, 'bo', label='Training acc') |
| 91 | +plt.plot(epochs, val_acc, 'b', label='Validation acc') |
| 92 | +plt.title('Training and validation accuracy') |
| 93 | +plt.legend() |
| 94 | + |
| 95 | +plt.figure() |
| 96 | + |
| 97 | +plt.plot(epochs, loss, 'bo', label='Training loss') |
| 98 | +plt.plot(epochs, val_loss, 'b', label='Validation loss') |
| 99 | +plt.title('Training and validation loss') |
| 100 | +plt.legend() |
| 101 | + |
| 102 | +plt.show() |
| 103 | + |
| 104 | + |
| 105 | + |
| 106 | + |
0 commit comments