You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Red Hat Enterprise Linux 8.10 (Ootpa) (x86_64)
GCC version: (GCC) 9.2.1 20191120 (Red Hat 9.2.1-2)
Clang version: Could not collect
CMake version: version 3.27.7
Libc version: glibc-2.28
Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.18.0-553.40.1.el8_10.x86_64-x86_64-with-glibc2.28
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100 80GB PCIe
GPU 1: NVIDIA A100 80GB PCIe
GPU 2: NVIDIA A100 80GB PCIe
GPU 3: NVIDIA A100 80GB PCIe
Nvidia driver version: 550.54.15
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 4
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 7V13 64-Core Processor
Stepping: 1
CPU MHz: 2445.443
BogoMIPS: 4890.88
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 32768K
NUMA node0 CPU(s): 0-23
NUMA node1 CPU(s): 24-47
NUMA node2 CPU(s): 48-71
NUMA node3 CPU(s): 72-95
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr arat umip vaes vpclmulqdq rdpid fsrm
Versions of relevant libraries:
[pip3] flashinfer-python==0.2.3+cu124torch2.5
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.3.0
[pip3] torch==2.6.0
[pip3] torchao==0.9.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.50.3
[pip3] triton==3.2.0
[conda] flashinfer-python 0.2.3+cu124torch2.5 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-ml-py 12.570.86 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pyzmq 26.3.0 pypi_0 pypi
[conda] torch 2.6.0 pypi_0 pypi
[conda] torchao 0.9.0 pypi_0 pypi
[conda] torchaudio 2.6.0 pypi_0 pypi
[conda] torchvision 0.21.0 pypi_0 pypi
[conda] transformers 4.50.3 pypi_0 pypi
[conda] triton 3.2.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 NIC0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 SYS SYS SYS 0-23 0 N/A
GPU1 NV12 X SYS SYS SYS 24-47 1 N/A
GPU2 SYS SYS X NV12 SYS 48-71 2 N/A
GPU3 SYS SYS NV12 X SYS 72-95 3 N/A
NIC0 SYS SYS SYS SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
LD_LIBRARY_PATH=/opt/rh/gcc-toolset-9/root/usr/lib64:/opt/rh/gcc-toolset-9/root/usr/lib:/opt/rh/gcc-toolset-9/root/usr/lib64/dyninst:/opt/rh/gcc-toolset-9/root/usr/lib/dyninst:/opt/rh/gcc-toolset-9/root/usr/lib64:/opt/rh/gcc-toolset-9/root/usr/lib:/opt/rh/gcc-toolset-9/root/usr/lib64:/opt/rh/gcc-toolset-9/root/usr/lib:/opt/rh/gcc-toolset-9/root/usr/lib64/dyninst:/opt/rh/gcc-toolset-9/root/usr/lib/dyninst:/opt/rh/gcc-toolset-9/root/usr/lib64:/opt/rh/gcc-toolset-9/root/usr/lib:/opt/rh/gcc-toolset-9/root/usr/lib64:/opt/rh/gcc-toolset-9/root/usr/lib:/opt/rh/gcc-toolset-9/root/usr/lib64/dyninst:/opt/rh/gcc-toolset-9/root/usr/lib/dyninst:/opt/rh/gcc-toolset-9/root/usr/lib64:/opt/rh/gcc-toolset-9/root/usr/lib:/opt/rh/gcc-toolset-9/root/usr/lib64:/opt/rh/gcc-toolset-9/root/usr/lib:/opt/rh/gcc-toolset-9/root/usr/lib64/dyninst:/opt/rh/gcc-toolset-9/root/usr/lib/dyninst:/opt/rh/gcc-toolset-9/root/usr/lib64:/opt/rh/gcc-toolset-9/root/usr/lib:/opt/rh/gcc-toolset-9/root/usr/lib64:/opt/rh/gcc-toolset-9/root/usr/lib:/opt/rh/gcc-toolset-9/root/usr/lib64/dyninst:/opt/rh/gcc-toolset-9/root/usr/lib/dyninst:/opt/rh/gcc-toolset-9/root/usr/lib64:/opt/rh/gcc-toolset-9/root/usr/lib:/opt/rh/gcc-toolset-9/root/usr/lib64:/opt/rh/gcc-toolset-9/root/usr/lib:/opt/rh/gcc-toolset-9/root/usr/lib64/dyninst:/opt/rh/gcc-toolset-9/root/usr/lib/dyninst:/opt/rh/gcc-toolset-9/root/usr/lib64:/opt/rh/gcc-toolset-9/root/usr/lib
VLLM_PORT=8081
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
When using the OpenAI‐compatible tool‐calling interface with --guided-decoding-backend xgrammar and tool_choice="required", the client auto‑injects a JSON Schema for the array of tool calls that contains "minItems": 1. vLLM’s xgrammar backend currently rejects any schema with minItems, resulting in:
openai.BadRequestError: Error code: 400-{'message': 'The provided JSON schema contains features not supported by xgrammar.',
…
}
As a result, tool-calling with agents is completely disabled in this configuration.
If I switch to tool_choice="auto", the error disappears but the model never emits any tool_calls (so response.choices[0].message.tool_calls is empty and I get an IndexError).
To reproduce
importos, jsonfromopenaiimportOpenAIfromdotenvimportload_dotenvload_dotenv()
client=OpenAI(
base_url=os.getenv("VLLM_ENDPOINT"), # e.g. http://localhost:8000api_key="****", # redacted
)
defget_weather(location: str, unit: str):
returnf"Getting the weather for {location} in {unit}…"tools= [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"},
"unit": {"type": "string", "enum": ["celsius","fahrenheit"]},
},
"required": ["location","unit"],
},
},
}
]
# This triggers the BadRequestError:response=client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[{"role":"user","content":"What's the weather in SF?"}],
tools=tools,
tool_choice="required", # ← forces an array schema with minItems:1
)
# IndexError if you use tool_choice="auto" because tool_calls is emptytool_call=response.choices[0].message.tool_calls[0]
Expected behavior
With tool_choice="required", vLLM should accept the generated array schema (even with minItems:1), or at least strip/ignore unsupported keywords like minItems.
With tool_choice="auto", the model should still choose to call the function when appropriate (e.g. a weather‐related query).
Logs
Error with tool_choice="required" and --guided-decoding-backend xgrammar:
BadRequestError: Error code: 400-{"object": "error","message": "The provided JSON schema contains features not supported by xgrammar.","type": "BadRequestError","param": null,"code": 400}
In that mode I no longer see the minItems error and tool calls succeed, but it’s unclear whether vLLM is still using the xgrammar backend under the hood or silently falling back to another decoding backend (e.g. outlines).
This is a critical issue: without support for minItems in xgrammar, agent tool-calling is completely non-functional. Either xgrammar must relax JSON Schema restrictions or the client should avoid emitting unsupported keywords when targeting xgrammar.
Thanks for your work on vLLM!
Before submitting a new issue...
Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
The text was updated successfully, but these errors were encountered:
Your current environment
The output of `python collect_env.py`
🐛 Describe the bug
When using the OpenAI‐compatible tool‐calling interface with
--guided-decoding-backend xgrammar
andtool_choice="required"
, the client auto‑injects a JSON Schema for the array of tool calls that contains"minItems": 1
. vLLM’s xgrammar backend currently rejects any schema with minItems, resulting in:As a result, tool-calling with agents is completely disabled in this configuration.
If I switch to
tool_choice="auto"
, the error disappears but the model never emits any tool_calls (soresponse.choices[0].message.tool_calls
is empty and I get an IndexError).To reproduce
Expected behavior
With
tool_choice="required"
, vLLM should accept the generated array schema (even withminItems:1
), or at least strip/ignore unsupported keywords like minItems.With
tool_choice="auto"
, the model should still choose to call the function when appropriate (e.g. a weather‐related query).Logs
Error with
tool_choice="required"
and--guided-decoding-backend xgrammar
:vLLM server log:
Behavior with tool_choice="auto":
Additional context
In that mode I no longer see the minItems error and tool calls succeed, but it’s unclear whether vLLM is still using the xgrammar backend under the hood or silently falling back to another decoding backend (e.g. outlines).
This is a critical issue: without support for minItems in xgrammar, agent tool-calling is completely non-functional. Either xgrammar must relax JSON Schema restrictions or the client should avoid emitting unsupported keywords when targeting xgrammar.
Thanks for your work on vLLM!
Before submitting a new issue...
The text was updated successfully, but these errors were encountered: