Skip to content

[Bug]: Bug while using deepspeed with TRL with vLLM #16867

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
1 task done
abeerag opened this issue Apr 18, 2025 · 0 comments
Open
1 task done

[Bug]: Bug while using deepspeed with TRL with vLLM #16867

abeerag opened this issue Apr 18, 2025 · 0 comments
Labels
bug Something isn't working

Comments

@abeerag
Copy link

abeerag commented Apr 18, 2025

Your current environment

The output of `python collect_env.py`

INFO 04-18 19:54:26 [init.py:239] Automatically detected platform cuda.
Collecting environment information...
/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/_distutils_hack/init.py:30: UserWarning: Setuptools is replacing distutils. Support for replacing an already imported distutils is deprecated. In the future, this condition will fail. Register concerns at https://github.com/pypa/setuptools/issues/new?template=distutils-deprecation.yml
warnings.warn(
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.10.17 | packaged by conda-forge | (main, Apr 10 2025, 22:19:12) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-5.15.0-1073-azure-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 535.216.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 96
On-line CPU(s) list: 0-95
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7V12 64-Core Processor
CPU family: 23
Model: 49
Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 2
Stepping: 0
BogoMIPS: 4890.90
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 3 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 48 MiB (96 instances)
L3 cache: 384 MiB (24 instances)
NUMA node(s): 4
NUMA node0 CPU(s): 0-23
NUMA node1 CPU(s): 24-47
NUMA node2 CPU(s): 48-71
NUMA node3 CPU(s): 72-95
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled
Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.3
[pip3] triton==3.2.0
[conda] blas 2.16 mkl conda-forge
[conda] cuda 12.2.2 0 nvidia
[conda] cuda-cccl 12.8.90 0 nvidia
[conda] cuda-cccl_linux-64 12.8.90 0 nvidia
[conda] cuda-command-line-tools 12.4.1 0 nvidia
[conda] cuda-compiler 12.6.2 0 nvidia
[conda] cuda-cudart 12.4.127 0 nvidia
[conda] cuda-cudart-dev 12.4.127 0 nvidia
[conda] cuda-cudart-static 12.8.90 0 nvidia
[conda] cuda-cudart-static_linux-64 12.8.90 0 nvidia
[conda] cuda-cuobjdump 12.8.90 0 nvidia
[conda] cuda-cupti 12.4.127 0 nvidia
[conda] cuda-cuxxfilt 12.8.90 0 nvidia
[conda] cuda-demo-suite 12.4.127 0 nvidia
[conda] cuda-documentation 12.4.127 0 nvidia
[conda] cuda-driver-dev 12.8.90 0 nvidia
[conda] cuda-driver-dev_linux-64 12.8.90 0 nvidia
[conda] cuda-gdb 12.8.90 0 nvidia
[conda] cuda-libraries 12.4.1 0 nvidia
[conda] cuda-libraries-dev 12.6.2 0 nvidia
[conda] cuda-libraries-static 12.8.1 0 nvidia
[conda] cuda-nsight 12.8.90 0 nvidia
[conda] cuda-nvcc 12.2.140 0 nvidia/label/cuda-12.2.2
[conda] cuda-nvdisasm 12.8.90 0 nvidia
[conda] cuda-nvml-dev 12.8.90 0 nvidia
[conda] cuda-nvprof 12.8.90 0 nvidia
[conda] cuda-nvprune 12.8.90 0 nvidia
[conda] cuda-nvrtc 12.4.127 0 nvidia
[conda] cuda-nvrtc-dev 12.4.127 0 nvidia
[conda] cuda-nvrtc-static 12.8.93 0 nvidia
[conda] cuda-nvtx 12.4.127 0 nvidia
[conda] cuda-nvvp 12.8.93 0 nvidia
[conda] cuda-opencl 12.8.90 0 nvidia
[conda] cuda-opencl-dev 12.8.90 0 nvidia
[conda] cuda-profiler-api 12.8.90 0 nvidia
[conda] cuda-runtime 12.4.1 0 nvidia
[conda] cuda-sanitizer-api 12.8.93 0 nvidia
[conda] cuda-toolkit 12.4.1 0 nvidia
[conda] cuda-tools 12.4.1 0 nvidia
[conda] cuda-version 12.8 3 nvidia
[conda] cuda-visual-tools 12.6.2 0 nvidia
[conda] gds-tools 1.13.1.3 0 nvidia
[conda] libblas 3.8.0 16_mkl conda-forge
[conda] libcblas 3.8.0 16_mkl conda-forge
[conda] libcublas 12.4.5.8 0 nvidia
[conda] libcublas-dev 12.4.5.8 0 nvidia
[conda] libcublas-static 12.8.4.1 0 nvidia
[conda] libcufft 11.2.1.3 0 nvidia
[conda] libcufft-dev 11.2.1.3 0 nvidia
[conda] libcufft-static 11.3.3.83 0 nvidia
[conda] libcufile 1.13.1.3 0 nvidia
[conda] libcufile-dev 1.13.1.3 0 nvidia
[conda] libcufile-static 1.13.1.3 0 nvidia
[conda] libcurand 10.3.9.90 0 nvidia
[conda] libcurand-dev 10.3.9.90 0 nvidia
[conda] libcurand-static 10.3.9.90 0 nvidia
[conda] libcusolver 11.6.1.9 0 nvidia
[conda] libcusolver-dev 11.6.1.9 0 nvidia
[conda] libcusolver-static 11.7.3.90 0 nvidia
[conda] libcusparse 12.3.1.170 0 nvidia
[conda] libcusparse-dev 12.3.1.170 0 nvidia
[conda] libcusparse-static 12.5.8.93 0 nvidia
[conda] liblapack 3.8.0 16_mkl conda-forge
[conda] liblapacke 3.8.0 16_mkl conda-forge
[conda] libnpp 12.2.5.30 0 nvidia
[conda] libnpp-dev 12.2.5.30 0 nvidia
[conda] libnpp-static 12.3.3.100 0 nvidia
[conda] libnvfatbin 12.8.90 0 nvidia
[conda] libnvfatbin-dev 12.8.90 0 nvidia
[conda] libnvfatbin-static 12.8.90 0 nvidia
[conda] libnvjitlink 12.4.127 0 nvidia
[conda] libnvjitlink-dev 12.4.127 0 nvidia
[conda] libnvjitlink-static 12.8.93 1 nvidia
[conda] libnvjpeg 12.3.1.117 0 nvidia
[conda] libnvjpeg-dev 12.3.1.117 0 nvidia
[conda] libnvjpeg-static 12.3.5.92 0 nvidia
[conda] mkl 2020.2 256
[conda] nsight-compute 2025.1.1.2 0 nvidia
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-ml-py 12.570.86 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pytorch-cuda 12.4 hc786d27_7 pytorch
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] pyzmq 26.4.0 pypi_0 pypi
[conda] torch 2.6.0 pypi_0 pypi
[conda] torchaudio 2.6.0 pypi_0 pypi
[conda] torchvision 0.21.0 pypi_0 pypi
[conda] transformers 4.51.3 pypi_0 pypi
[conda] triton 3.2.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.4
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 NODE NODE SYS SYS SYS SYS SYS SYS 24-47 1 N/A
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 NODE NODE SYS SYS SYS SYS SYS SYS 24-47 1 N/A
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 SYS SYS NODE NODE SYS SYS SYS SYS 0-23 0 N/A
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 SYS SYS NODE NODE SYS SYS SYS SYS 0-23 0 N/A
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 SYS SYS SYS SYS NODE NODE SYS SYS 72-95 3 N/A
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 SYS SYS SYS SYS NODE NODE SYS SYS 72-95 3 N/A
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 SYS SYS SYS SYS SYS SYS NODE NODE 48-71 2 N/A
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X SYS SYS SYS SYS SYS SYS NODE NODE 48-71 2 N/A
NIC0 NODE NODE SYS SYS SYS SYS SYS SYS X NODE SYS SYS SYS SYS SYS SYS
NIC1 NODE NODE SYS SYS SYS SYS SYS SYS NODE X SYS SYS SYS SYS SYS SYS
NIC2 SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS X NODE SYS SYS SYS SYS
NIC3 SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS NODE X SYS SYS SYS SYS
NIC4 SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS X NODE SYS SYS
NIC5 SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS NODE X SYS SYS
NIC6 SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS X NODE
NIC7 SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS NODE X

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks

NIC Legend:

NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7

NCCL_SOCKET_IFNAME=eth0
NCCL_DEBUG_SUBSYS=GRAPH,INIT,ENV
NCCL_DEBUG=INFO
NCCL_IB_TIMEOUT=22
LD_LIBRARY_PATH=/azureml-envs/designer-pytorch-2.3-train/lib:
NCCL_IB_DISABLE=0
NCCL_TOPO_FILE=/opt/microsoft/ndv4-topo.xml
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

import datasets
import functools
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import trl

from alpha.services.assistant.train import dataset
from alpha.services.assistant.train import reward

if __name__ == "__main__":
    processing_class = AutoTokenizer.from_pretrained('google/gemma-7b', padding_side="left")
    model = AutoModelForCausalLM.from_pretrained('google/gemma-7b')

    train_dataset = dataset.load_dataset(dataset.KnownClass(), datasets.Split.TRAIN)
    eval_dataset = dataset.load_dataset(dataset.KnownClass(), datasets.Split.VALIDATION)

    reward_fn: reward.SingleTurnComponentizedRewardFn = functools.partial(
        reward.stg_rewards,
        processing_class=processing_class,
        max_completion_length=5120 + 1536,
    )
    config = trl.GRPOConfig(
        num_train_epochs=16,
        gradient_accumulation_steps=8,
        per_device_train_batch_size=16,
        per_device_eval_batch_size=16,
        num_generations=16,
        max_prompt_length=5120,
        max_completion_length=1536,
        use_cpu=False,
        beta=0.04,
        temperature=0.9,
        bf16=True,
        bf16_full_eval=True,
        torch_empty_cache_steps=1,
        eval_accumulation_steps=1
        use_vllm=True,
    )
    trainer = trl.GRPOTrainer(
        args=config,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        processing_class=processing_class,
        model=model,
        reward_funcs=reward.total_reward_fn(reward_fn),
    )
    trainer.train()

Launching with:

export VLLM_USE_V1=0
export NCCL_DEBUG=INFO

CUDA_VISIBLE_DEVICES=0 nohup trl vllm-serve --model google/gemma-3-4b-it --max-model-len 6656 --gpu-memory-utilization=0.9 --enable_prefix_caching True > outputs/vllm.txt  & ```

CUDA_VISIBLE_DEVICES="1,2,3,4,5,6,7" nohup accelerate launch --config_file alpha/services/assistant/train/accelerate_config_8xh100.yaml alpha/services/assistant/train/train_standardhf.py > outputs/accelerate.txt &

The accelerate config is as follows:

compute_environment: LOCAL_MACHINE
debug: true
deepspeed_config:
  gradient_accumulation_steps: 8
  gradient_clipping: 1.0
  offload_optimizer_device: cpu
  offload_param_device: cpu
  zero3_init_flag: false
  zero_stage: 3
distributed_type: DEEPSPEED
downcast_bf16: 'no'
enable_cpu_affinity: false
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 7
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

outputs:

Traceback (most recent call last):
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/uvicorn/protocols/http/httptools_impl.py", line 409, in run_asgi
    result = await app(  # type: ignore[func-returns-value]
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/uvicorn/middleware/proxy_headers.py", line 60, in __call__
    return await self.app(scope, receive, send)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/fastapi/applications.py", line 1054, in __call__
    await super().__call__(scope, receive, send)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/applications.py", line 112, in __call__
    await self.middleware_stack(scope, receive, send)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/middleware/errors.py", line 187, in __call__
    raise exc
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/middleware/errors.py", line 165, in __call__
    await self.app(scope, receive, _send)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/middleware/exceptions.py", line 62, in __call__
    await wrap_app_handling_exceptions(self.app, conn)(scope, receive, send)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/_exception_handler.py", line 53, in wrapped_app
    raise exc
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/_exception_handler.py", line 42, in wrapped_app
    await app(scope, receive, sender)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/routing.py", line 714, in __call__
    await self.middleware_stack(scope, receive, send)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/routing.py", line 734, in app
    await route.handle(scope, receive, send)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/routing.py", line 288, in handle
    await self.app(scope, receive, send)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/routing.py", line 76, in app
    await wrap_app_handling_exceptions(app, request)(scope, receive, send)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/_exception_handler.py", line 53, in wrapped_app
    raise exc
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/_exception_handler.py", line 42, in wrapped_app
    await app(scope, receive, sender)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/routing.py", line 74, in app
    await response(scope, receive, send)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/responses.py", line 160, in __call__
    await self.background()
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/background.py", line 41, in __call__
    await task()
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/background.py", line 28, in __call__
    await run_in_threadpool(self.func, *self.args, **self.kwargs)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/starlette/concurrency.py", line 37, in run_in_threadpool
    return await anyio.to_thread.run_sync(func)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/anyio/to_thread.py", line 56, in run_sync
    return await get_async_backend().run_sync_in_worker_thread(
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 2470, in run_sync_in_worker_thread
    return await future
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 967, in run
    result = context.run(func, *args)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/vllm/entrypoints/llm.py", line 496, in collective_rpc
    return self.llm_engine.collective_rpc(method, timeout, args, kwargs)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/vllm/engine/llm_engine.py", line 2132, in collective_rpc
    return self.model_executor.collective_rpc(method, timeout, args,
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/vllm/executor/uniproc_executor.py", line 56, in collective_rpc
    answer = run_method(self.driver_worker, method, args, kwargs)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/vllm/utils.py", line 2347, in run_method
    return func(*args, **kwargs)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/trl/scripts/vllm_serve.py", line 103, in init_communicator
    self.pynccl_comm = PyNcclCommunicator(pg, device=self.device)
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/vllm/distributed/device_communicators/pynccl.py", line 99, in __init__
    self.comm: ncclComm_t = self.nccl.ncclCommInitRank(
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/vllm/distributed/device_communicators/pynccl_wrapper.py", line 277, in ncclCommInitRank
    self.NCCL_CHECK(self._funcs["ncclCommInitRank"](ctypes.byref(comm),
  File "/azureml-envs/designer-pytorch-2.3-train/lib/python3.10/site-packages/vllm/distributed/device_communicators/pynccl_wrapper.py", line 256, in NCCL_CHECK
    raise RuntimeError(f"NCCL error: {error_str}")
RuntimeError: NCCL error: unhandled cuda error (run with NCCL_DEBUG=INFO for details)

The error is isolated to deepspeed because if I run with

CUDA_VISIBLE_DEVICES="1,2,3,4,5,6,7" accelerate launch --multi-gpu --num-processes 7 alpha/services/assistant/train/train_standardhf.py

there are no issues.

The error in communication is between GPU 0 and GPU 1

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@abeerag abeerag added the bug Something isn't working label Apr 18, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

1 participant