-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfvd_utils.py
493 lines (406 loc) · 18.9 KB
/
fvd_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
from sklearn.metrics.pairwise import polynomial_kernel
MAX_BATCH = 8
TARGET_RESOLUTION = (224, 224)
def preprocess(videos, target_resolution):
# videos in {0, ..., 255} as np.uint8 array
b, t, h, w, c = videos.shape
all_frames = torch.FloatTensor(videos).flatten(end_dim=1) # (b * t, h, w, c)
all_frames = all_frames.permute(0, 3, 1, 2).contiguous() # (b * t, c, h, w)
resized_videos = F.interpolate(all_frames, size=target_resolution,
mode='bilinear', align_corners=False)
resized_videos = resized_videos.view(b, t, c, *target_resolution)
output_videos = resized_videos.transpose(1, 2).contiguous() # (b, c, t, *)
scaled_videos = 2. * output_videos / 255. - 1 # [-1, 1]
return scaled_videos
def get_logits(i3d, videos, device, batch_size=None):
if batch_size is None:
batch_size = MAX_BATCH
with torch.no_grad():
logits = []
for i in range(0, videos.shape[0], batch_size):
batch = videos[i:i + batch_size].to(device)
logits.append(i3d(batch))
logits = torch.cat(logits, dim=0)
return logits
def get_fvd_logits(videos, i3d, device, batch_size=None):
videos = preprocess(videos, TARGET_RESOLUTION)
embeddings = get_logits(i3d, videos, device, batch_size=batch_size)
return embeddings
def load_fvd_model(device):
i3d = InceptionI3d(400, in_channels=3).to(device)
current_dir = os.path.dirname(os.path.abspath(__file__))
i3d_path = os.path.join("ckpts", 'i3d_pretrained_400.pt')
i3d.load_state_dict(torch.load(i3d_path, map_location=device))
i3d.eval()
return i3d
# https://github.com/tensorflow/gan/blob/de4b8da3853058ea380a6152bd3bd454013bf619/tensorflow_gan/python/eval/classifier_metrics.py#L161
def _symmetric_matrix_square_root(mat, eps=1e-10):
u, s, v = torch.svd(mat)
si = torch.where(s < eps, s, torch.sqrt(s))
return torch.matmul(torch.matmul(u, torch.diag(si)), v.t())
# https://github.com/tensorflow/gan/blob/de4b8da3853058ea380a6152bd3bd454013bf619/tensorflow_gan/python/eval/classifier_metrics.py#L400
def trace_sqrt_product(sigma, sigma_v):
sqrt_sigma = _symmetric_matrix_square_root(sigma)
sqrt_a_sigmav_a = torch.matmul(sqrt_sigma, torch.matmul(sigma_v, sqrt_sigma))
return torch.trace(_symmetric_matrix_square_root(sqrt_a_sigmav_a))
# https://discuss.pytorch.org/t/covariance-and-gradient-support/16217/2
def cov(m, rowvar=False):
'''Estimate a covariance matrix given data.
Covariance indicates the level to which two variables vary together.
If we examine N-dimensional samples, `X = [x_1, x_2, ... x_N]^T`,
then the covariance matrix element `C_{ij}` is the covariance of
`x_i` and `x_j`. The element `C_{ii}` is the variance of `x_i`.
Args:
m: A 1-D or 2-D array containing multiple variables and observations.
Each row of `m` represents a variable, and each column a single
observation of all those variables.
rowvar: If `rowvar` is True, then each row represents a
variable, with observations in the columns. Otherwise, the
relationship is transposed: each column represents a variable,
while the rows contain observations.
Returns:
The covariance matrix of the variables.
'''
if m.dim() > 2:
raise ValueError('m has more than 2 dimensions')
if m.dim() < 2:
m = m.view(1, -1)
if not rowvar and m.size(0) != 1:
m = m.t()
fact = 1.0 / (m.size(1) - 1) # unbiased estimate
m_center = m - torch.mean(m, dim=1, keepdim=True)
mt = m_center.t() # if complex: mt = m.t().conj()
return fact * m_center.matmul(mt).squeeze()
def frechet_distance(x1, x2):
x1 = x1.flatten(start_dim=1)
x2 = x2.flatten(start_dim=1)
m, m_w = x1.mean(dim=0), x2.mean(dim=0)
sigma, sigma_w = cov(x1, rowvar=False), cov(x2, rowvar=False)
sqrt_trace_component = trace_sqrt_product(sigma, sigma_w)
trace = torch.trace(sigma + sigma_w) - 2.0 * sqrt_trace_component
mean = torch.sum((m - m_w) ** 2)
fd = trace + mean
return fd
def polynomial_mmd(X, Y):
m = X.shape[0]
n = Y.shape[0]
# compute kernels
K_XX = polynomial_kernel(X)
K_YY = polynomial_kernel(Y)
K_XY = polynomial_kernel(X, Y)
# compute mmd distance
K_XX_sum = (K_XX.sum() - np.diagonal(K_XX).sum()) / (m * (m - 1))
K_YY_sum = (K_YY.sum() - np.diagonal(K_YY).sum()) / (n * (n - 1))
K_XY_sum = K_XY.sum() / (m * n)
mmd = K_XX_sum + K_YY_sum - 2 * K_XY_sum
return mmd
################################################ I3D model ############################################################
# https://github.com/piergiaj/pytorch-i3d
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import os
import sys
from collections import OrderedDict
class MaxPool3dSamePadding(nn.MaxPool3d):
def compute_pad(self, dim, s):
if s % self.stride[dim] == 0:
return max(self.kernel_size[dim] - self.stride[dim], 0)
else:
return max(self.kernel_size[dim] - (s % self.stride[dim]), 0)
def forward(self, x):
# compute 'same' padding
(batch, channel, t, h, w) = x.size()
#print t,h,w
out_t = np.ceil(float(t) / float(self.stride[0]))
out_h = np.ceil(float(h) / float(self.stride[1]))
out_w = np.ceil(float(w) / float(self.stride[2]))
#print out_t, out_h, out_w
pad_t = self.compute_pad(0, t)
pad_h = self.compute_pad(1, h)
pad_w = self.compute_pad(2, w)
#print pad_t, pad_h, pad_w
pad_t_f = pad_t // 2
pad_t_b = pad_t - pad_t_f
pad_h_f = pad_h // 2
pad_h_b = pad_h - pad_h_f
pad_w_f = pad_w // 2
pad_w_b = pad_w - pad_w_f
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
#print x.size()
#print pad
x = F.pad(x, pad)
return super(MaxPool3dSamePadding, self).forward(x)
class Unit3D(nn.Module):
def __init__(self, in_channels,
output_channels,
kernel_shape=(1, 1, 1),
stride=(1, 1, 1),
padding=0,
activation_fn=F.relu,
use_batch_norm=True,
use_bias=False,
name='unit_3d'):
"""Initializes Unit3D module."""
super(Unit3D, self).__init__()
self._output_channels = output_channels
self._kernel_shape = kernel_shape
self._stride = stride
self._use_batch_norm = use_batch_norm
self._activation_fn = activation_fn
self._use_bias = use_bias
self.name = name
self.padding = padding
self.conv3d = nn.Conv3d(in_channels=in_channels,
out_channels=self._output_channels,
kernel_size=self._kernel_shape,
stride=self._stride,
padding=0, # we always want padding to be 0 here. We will dynamically pad based on input size in forward function
bias=self._use_bias)
if self._use_batch_norm:
self.bn = nn.BatchNorm3d(self._output_channels, eps=1e-5, momentum=0.001)
def compute_pad(self, dim, s):
if s % self._stride[dim] == 0:
return max(self._kernel_shape[dim] - self._stride[dim], 0)
else:
return max(self._kernel_shape[dim] - (s % self._stride[dim]), 0)
def forward(self, x):
# compute 'same' padding
(batch, channel, t, h, w) = x.size()
#print t,h,w
out_t = np.ceil(float(t) / float(self._stride[0]))
out_h = np.ceil(float(h) / float(self._stride[1]))
out_w = np.ceil(float(w) / float(self._stride[2]))
#print out_t, out_h, out_w
pad_t = self.compute_pad(0, t)
pad_h = self.compute_pad(1, h)
pad_w = self.compute_pad(2, w)
#print pad_t, pad_h, pad_w
pad_t_f = pad_t // 2
pad_t_b = pad_t - pad_t_f
pad_h_f = pad_h // 2
pad_h_b = pad_h - pad_h_f
pad_w_f = pad_w // 2
pad_w_b = pad_w - pad_w_f
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
#print x.size()
#print pad
x = F.pad(x, pad)
#print x.size()
x = self.conv3d(x)
if self._use_batch_norm:
x = self.bn(x)
if self._activation_fn is not None:
x = self._activation_fn(x)
return x
class InceptionModule(nn.Module):
def __init__(self, in_channels, out_channels, name):
super(InceptionModule, self).__init__()
self.b0 = Unit3D(in_channels=in_channels, output_channels=out_channels[0], kernel_shape=[1, 1, 1], padding=0,
name=name+'/Branch_0/Conv3d_0a_1x1')
self.b1a = Unit3D(in_channels=in_channels, output_channels=out_channels[1], kernel_shape=[1, 1, 1], padding=0,
name=name+'/Branch_1/Conv3d_0a_1x1')
self.b1b = Unit3D(in_channels=out_channels[1], output_channels=out_channels[2], kernel_shape=[3, 3, 3],
name=name+'/Branch_1/Conv3d_0b_3x3')
self.b2a = Unit3D(in_channels=in_channels, output_channels=out_channels[3], kernel_shape=[1, 1, 1], padding=0,
name=name+'/Branch_2/Conv3d_0a_1x1')
self.b2b = Unit3D(in_channels=out_channels[3], output_channels=out_channels[4], kernel_shape=[3, 3, 3],
name=name+'/Branch_2/Conv3d_0b_3x3')
self.b3a = MaxPool3dSamePadding(kernel_size=[3, 3, 3],
stride=(1, 1, 1), padding=0)
self.b3b = Unit3D(in_channels=in_channels, output_channels=out_channels[5], kernel_shape=[1, 1, 1], padding=0,
name=name+'/Branch_3/Conv3d_0b_1x1')
self.name = name
def forward(self, x):
b0 = self.b0(x)
b1 = self.b1b(self.b1a(x))
b2 = self.b2b(self.b2a(x))
b3 = self.b3b(self.b3a(x))
return torch.cat([b0,b1,b2,b3], dim=1)
class InceptionI3d(nn.Module):
"""Inception-v1 I3D architecture.
The model is introduced in:
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
Joao Carreira, Andrew Zisserman
https://arxiv.org/pdf/1705.07750v1.pdf.
See also the Inception architecture, introduced in:
Going deeper with convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
http://arxiv.org/pdf/1409.4842v1.pdf.
"""
# Endpoints of the model in order. During construction, all the endpoints up
# to a designated `final_endpoint` are returned in a dictionary as the
# second return value.
VALID_ENDPOINTS = (
'Conv3d_1a_7x7',
'MaxPool3d_2a_3x3',
'Conv3d_2b_1x1',
'Conv3d_2c_3x3',
'MaxPool3d_3a_3x3',
'Mixed_3b',
'Mixed_3c',
'MaxPool3d_4a_3x3',
'Mixed_4b',
'Mixed_4c',
'Mixed_4d',
'Mixed_4e',
'Mixed_4f',
'MaxPool3d_5a_2x2',
'Mixed_5b',
'Mixed_5c',
'Logits',
'Predictions',
)
FEAT_ENDPOINTS = (
'Conv3d_1a_7x7',
'Conv3d_2c_3x3',
'Mixed_3c',
'Mixed_4f',
'Mixed_5c',
)
def __init__(self,
num_classes=400,
spatial_squeeze=True,
final_endpoint='Logits',
name='inception_i3d',
in_channels=3,
dropout_keep_prob=0.5,
is_coinrun=False,
):
"""Initializes I3D model instance.
Args:
num_classes: The number of outputs in the logit layer (default 400, which
matches the Kinetics dataset).
spatial_squeeze: Whether to squeeze the spatial dimensions for the logits
before returning (default True).
final_endpoint: The model contains many possible endpoints.
`final_endpoint` specifies the last endpoint for the model to be built
up to. In addition to the output at `final_endpoint`, all the outputs
at endpoints up to `final_endpoint` will also be returned, in a
dictionary. `final_endpoint` must be one of
InceptionI3d.VALID_ENDPOINTS (default 'Logits').
name: A string (optional). The name of this module.
Raises:
ValueError: if `final_endpoint` is not recognized.
"""
if final_endpoint not in self.VALID_ENDPOINTS:
raise ValueError('Unknown final endpoint %s' % final_endpoint)
super(InceptionI3d, self).__init__()
self._num_classes = num_classes
self._spatial_squeeze = spatial_squeeze
self._final_endpoint = final_endpoint
self.logits = None
self.is_coinrun = is_coinrun
if self._final_endpoint not in self.VALID_ENDPOINTS:
raise ValueError('Unknown final endpoint %s' % self._final_endpoint)
self.end_points = {}
end_point = 'Conv3d_1a_7x7'
self.end_points[end_point] = Unit3D(in_channels=in_channels, output_channels=64, kernel_shape=[7, 7, 7],
stride=(1 if is_coinrun else 2, 2, 2), padding=(3,3,3), name=name+end_point)
if self._final_endpoint == end_point: return
end_point = 'MaxPool3d_2a_3x3'
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
padding=0)
if self._final_endpoint == end_point: return
end_point = 'Conv3d_2b_1x1'
self.end_points[end_point] = Unit3D(in_channels=64, output_channels=64, kernel_shape=[1, 1, 1], padding=0,
name=name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Conv3d_2c_3x3'
self.end_points[end_point] = Unit3D(in_channels=64, output_channels=192, kernel_shape=[3, 3, 3], padding=1,
name=name+end_point)
if self._final_endpoint == end_point: return
end_point = 'MaxPool3d_3a_3x3'
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
padding=0)
if self._final_endpoint == end_point: return
end_point = 'Mixed_3b'
self.end_points[end_point] = InceptionModule(192, [64,96,128,16,32,32], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_3c'
self.end_points[end_point] = InceptionModule(256, [128,128,192,32,96,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'MaxPool3d_4a_3x3'
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1 if is_coinrun else 3, 3, 3], stride=(1 if is_coinrun else 2, 2, 2),
padding=0)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4b'
self.end_points[end_point] = InceptionModule(128+192+96+64, [192,96,208,16,48,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4c'
self.end_points[end_point] = InceptionModule(192+208+48+64, [160,112,224,24,64,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4d'
self.end_points[end_point] = InceptionModule(160+224+64+64, [128,128,256,24,64,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4e'
self.end_points[end_point] = InceptionModule(128+256+64+64, [112,144,288,32,64,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4f'
self.end_points[end_point] = InceptionModule(112+288+64+64, [256,160,320,32,128,128], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'MaxPool3d_5a_2x2'
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[2, 2, 2], stride=(1 if is_coinrun else 2, 2, 2),
padding=0)
if self._final_endpoint == end_point: return
end_point = 'Mixed_5b'
self.end_points[end_point] = InceptionModule(256+320+128+128, [256,160,320,32,128,128], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_5c'
self.end_points[end_point] = InceptionModule(256+320+128+128, [384,192,384,48,128,128], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Logits'
self.avg_pool = nn.AvgPool3d(kernel_size=[1, 8, 8] if is_coinrun else [2, 7, 7],
stride=(1, 1, 1))
self.dropout = nn.Dropout(dropout_keep_prob)
self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
kernel_shape=[1, 1, 1],
padding=0,
activation_fn=None,
use_batch_norm=False,
use_bias=True,
name='logits')
self.build()
def replace_logits(self, num_classes):
self._num_classes = num_classes
self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
kernel_shape=[1, 1, 1],
padding=0,
activation_fn=None,
use_batch_norm=False,
use_bias=True,
name='logits')
def build(self):
for k in self.end_points.keys():
self.add_module(k, self.end_points[k])
def forward(self, x):
for end_point in self.VALID_ENDPOINTS:
if end_point in self.end_points:
x = self._modules[end_point](x) # use _modules to work with dataparallel
x = self.logits(self.dropout(self.avg_pool(x)))
if self._spatial_squeeze:
logits = x.squeeze(3).squeeze(3)
logits = logits.mean(dim=2)
# logits is batch X time X classes, which is what we want to work with
return logits
def extract_features(self, x):
for end_point in self.VALID_ENDPOINTS:
if end_point in self.end_points:
x = self._modules[end_point](x)
return self.avg_pool(x)
def extract_pre_pool_features(self, x):
for end_point in self.VALID_ENDPOINTS:
if end_point in self.end_points:
x = self._modules[end_point](x)
return x
def extract_features_multiscale(self, x):
xs = []
for end_point in self.VALID_ENDPOINTS:
if end_point in self.end_points:
x = self._modules[end_point](x)
if end_point in self.FEAT_ENDPOINTS:
xs.append(x)
return xs