-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
82 lines (67 loc) · 2.7 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import argparse
from typing import List, Tuple
import numpy as np
from datasets import load_dataset as load_ds
from jiwer import wer
from model import MoonshineTFLiteModel
from transcribe import load_tokenizer
from tqdm import tqdm
from whisper.normalizers import EnglishTextNormalizer
def calculate_wer(model_name: str, model_dir: str = None, model_precision : str = "float") -> float:
"""Calculate Word Error Rate for the given model using Librispeech ASR dataset."""
# Use copy of dataset test split to avoid download of full dataset (30GB).
dataset = load_ds(
path="hf-audio/esb-datasets-test-only-sorted",
name="librispeech",
split="test.clean",
trust_remote_code=True,
)
model = MoonshineTFLiteModel(model_name=model_name, model_dir=model_dir, model_precision=model_precision)
normalizer = EnglishTextNormalizer()
tokenizer = load_tokenizer()
expected_texts, predicted_texts = process_dataset(dataset, model, tokenizer)
return wer(
normalizer(" ".join(expected_texts)),
normalizer(" ".join(predicted_texts)),
)
def process_dataset(
dataset, model: MoonshineTFLiteModel, tokenizer
) -> Tuple[List[str], List[str]]:
"""Process the dataset and return list pair of expected and predicted text."""
expected_texts, predicted_texts = [], []
i = 0
for example in tqdm(dataset):
audio = example["audio"]["array"]
audio_input = audio[np.newaxis, :].astype(np.float32)
tokens = model.generate(audio_input)
predicted_text = tokenizer.decode_batch(tokens)[0]
expected_texts.append(" " + example["text"])
predicted_texts.append(" " + predicted_text)
if not predicted_text:
tqdm.write(f"Model predicted an empty text for example {i}")
i += 1
return expected_texts, predicted_texts
def parse_arguments() -> argparse.Namespace:
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
prog="wer.py",
description="Word Error Rate test for Moonshine models with Librispeech ASR",
)
parser.add_argument(
"--model_name",
help="Model to run the WER test with",
default="moonshine/tiny",
choices=["moonshine/base", "moonshine/tiny"],
)
parser.add_argument(
"--models_dir",
help="Folder containing local model files",
default=None,
)
result = parser.parse_args()
return result
if __name__ == "__main__":
args = parse_arguments()
wer_result = calculate_wer(args.model_name, args.models_dir)
print(f"\n Model: {args.model_name} {args.models_dir}")
print(f" WER: {100. * wer_result:.2f}% using OpenAI Whisper EnglishTextNormalizer")