-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfidrf_jit.h
792 lines (717 loc) · 22.3 KB
/
fidrf_jit.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
#error "JIT code is no longer maintained -- cmdlist is almost as fast on ix86"
//
// JIT-compiled filter-running code.
//
// Copyright (c) 2002-2003 Jim Peters <http://uazu.net/>. This
// file is released under the GNU Lesser General Public License
// (LGPL) version 2.1 as published by the Free Software
// Foundation. See the file COPYING_LIB for details, or visit
// <http://www.fsf.org/licenses/licenses.html>.
//
// The aim of this version of the filter-running code is to go as
// fast as possible (without flattening the sub-filters together)
// by generating the necessary code at run-time.
//
// This runs the filter exactly as specified, without convolving
// the sub-filters together or changing their order. The only
// rearrangement performed is making the IIR first coefficient
// 1.0, and gathering any lone 1-coefficient FIR filters together
// into a single initial gain adjustment. For this reason, the
// routine runs fastest if IIR and FIR sub-filters are grouped
// together in IIR/FIR pairs, as these can then share common
// working buffers.
//
// The generated code is cached, and is reused for more than one
// filter if possible. This means that a bank of 1000s of
// filters of similar types will probably all end up sharing the
// same generated routine, which improves processor cache and
// memory usage.
//
// Probably the generated code could be improved, but it is not
// too bad. Copying the buffer values using 'rep movsl' turned
// out to be much faster than loading and storing the floating
// point values individually whilst working through the buffer.
//
// The generated code was tested for speed on a Celeron-900 and
// on a Pentium-133. It always beats the RF_CMDLIST option. It
// can be slightly slower than the RF_COMBINED option, but only
// where that option gets a big advantage from flattening the
// sub-filters. For pre-flattened filters, it is faster.
//
// The generated code can be dumped out at any point in .s format
// using fid_run_dump(). This can be assembled using 'gas' and
// then disassembled with 'objdump -d' to see all the generated
// code.
//
// Things that could be improved:
//
// - Don't keep the fir running total on the stack at all times.
// Instead create it at the first FIR operation. This means
// generating about 10 new special-case macros. This would save
// an add for every filter stage, and some of the messing around
// at start and end currently done to set up / clean up this
// value on the FP stack.
//
typedef struct Routine Routine;
struct Routine {
Routine *nxt; // Next in list, or 0
int ref; // Reference count
int hash; // Hash of routine
char *code; // Routine itself
int len; // Length of code in bytes
};
typedef struct Run {
int magic; // Magic: 0x64966325
int n_buf; // Length of working buffer required in doubles
double *coef; // Coefficient list
Routine *rout; // Routine used
} Run;
typedef struct RunBuf {
double *coef; // Coefficient array
int mov_cnt; // Number of 4-byte chunks to copy from &buf[1] to &buf[0]
double buf[0]; // Buffer itself
} RunBuf;
static unsigned long int do_hash(unsigned char *, unsigned long int, unsigned long int);
#define HASH(p,len) ((int)do_hash((unsigned char *)p, (unsigned long int)len, 0))
// Code generation
//
// %edx is the working buffer pointer
// %eax is the coefficient pointer
// %ecx is the loop counter
// floating point stack contains working values at the top, then
// previous buffer value, then running iir total, then running
// fir total
//
// Codes in the add() string:
//
// %C 4-byte long value count for loop
// %L Label -- remember this address for looping back to
// %R 1-byte relative jump back to %L address
// %D 1-byte relative address of buffer value. If zero, this adjusts the
// previous byte by ^=0x40 to make it a pure (%edx) form instead of 0(%edx)
// %D+ 1-byte relative address of buffer value as above, plus increment %edx
// if we are getting close to the end of the range
// %A 1-byte relative address of coefficient value. If zero does same as for %D.
// %A+ 1-byte relative address of coefficient value, plus %eax inc
// if necessary
// %= Insert code to update %edx and %eax to point to the given offsets
//
// Startup code
//
// pushl %ebp
// movl %esp,%ebp
// movl 8(%ebp),%edx
// movl (%edx),%eax
// movl 4(%edx),%ecx
// fldz
// fldl 12(%ebp)
// fldl 8(%edx)
// fmull (%eax)
// leal 8(%edx),%edi
// leal 16(%edx),%esi
// cld
// rep movsl
#define STARTUP add("55 89E5 8B5508 8B02 8B4A04 D9EE DD450C DD4208 DC08 8D7A08 8D7210 FC F3A5")
// Return
//
// fstp %st(0) // pop
// fstp %st(1)
// leave
// ret
#define RETURN add("DDD8 DDD9 C9 C3")
// Looping
//
// movl $100,%ecx
// .LXX
// ...
// loop .LXX
//
// //WAS decl %ecx
// //WAS testl %ecx,%ecx
// //WAS jg .LXX
#define FOR(xx, nnd, nna) add("B9%C %= %L", xx, (nnd)*8, (nna)*8)
//WAS #define NEXT(nnd, nna) add("%= 49 85C9 7F%R", (nnd)*8, (nna)*8)
#define NEXT(nnd, nna) add("%= E2%R", (nnd)*8, (nna)*8)
// Fetching/storing buffer values
//
// tmp= buf[n];
// fldl nn(%edx)
//
// buf[nn]= iir;
// fld %st(1)
// fstpl nn(%edx)
#define GETB(nn) add("DD42%D+", (nn)*8)
#define PUTB(nn) add("D9C1 DD5A%D+", (nn)*8)
// FIR element with following IIR element
//
// fir -= 2 * tmp;
// fsub %st(0),%st(2)
// fsub %st(0),%st(2)
// fir -= tmp;
// fsub %st(0),%st(2)
// fir += tmp;
// fadd %st(0),%st(2)
// fir += 2 * tmp;
// fadd %st(0),%st(2)
// fadd %st(0),%st(2)
// fir += coef[nn] * tmp;
// fld %st(0)
// fmull nn(%eax)
// faddp %st(0),%st(3)
#define FIRc_M2 add("DCEA DCEA")
#define FIRc_M1 add("DCEA")
#define FIRc_P1 add("DCC2")
#define FIRc_P2 add("DCC2 DCC2")
#define FIRc(nn) add("D9C0 DC48%A+ DEC3", (nn)*8)
// FIR element with no following IIR element
//
// fir -= 2 * tmp;
// fsub %st(0),%st(2)
// fsubp %st(0),%st(2)
// fir -= tmp;
// fsubp %st(0),%st(2)
// fir += 0 * tmp;
// fstp %st(0),%st(0) // Really I just want to pop the top value
// fir += tmp;
// faddp %st(0),%st(2)
// fir += 2 * tmp;
// fadd %st(0),%st(2)
// faddp %st(0),%st(2)
// fir += coef[0] * tmp;
// fmull nn(%eax)
// faddp %st(0),%st(2)
#define FIR_M2 add("DCEA DEEA")
#define FIR_M1 add("DEEA")
#define FIR_0 add("DDD8")
#define FIR_P1 add("DEC2")
#define FIR_P2 add("DCC2 DEC2")
#define FIR(nn) add("DC48%A+ DEC2", (nn)*8)
// IIR element
//
// iir -= coef[nn] * tmp;
// fmull nn(%eax)
// fsubp %st(0),%st(1)
#define IIR(nn) add("DC48%A+ DEE9", (nn)*8)
// Final FIR element of pure-FIR or mixed FIR-IIR stage
//
// iir= fir + coef[nn] * iir; fir= 0;
// fxch
// fmull nn(%eax)
// faddp %st(2)
// fldz
// fstp %st(3)
// iir= fir + 1.0 * iir; fir= 0;
// fxch
// faddp %st(2)
// fldz
// fstp %st(3)
// iir= fir - 1.0 * iir; fir= 0;
// fxch
// fsubp %st(2)
// fldz
// fstp %st(3)
#define FIREND(nn) add("D9C9 DC48%A+ DEC2 D9EE DDDB", (nn)*8)
#define FIREND_P1 add("D9C9 DEC2 D9EE DDDB")
#define FIREND_M1 add("D9C9 DEEA D9EE DDDB")
//
// Globals for handling routines
//
static char *r_buf; // Buffer address
static char *r_end; // Curent end of buffer
static char *r_cp; // Current write-position
static char *r_lab; // Current loop-back label, or 0
static int r_loop; // Loop count
static int r_edx; // %edx offset relative to initial position
static int r_eax; // %eax offset relative to initial position
static Routine *r_list; // List of routines or 0
//
// Add code to the current routine. This uses global variables,
// and so is not thread-safe.
//
static void
add(char *fmt, ...) {
va_list ap;
int ch, val;
va_start(ap, fmt);
if (r_end - r_cp < 32)
error("JIT error: routine buffer exceeded");
while ((ch= *fmt++)) {
if (isspace(ch)) continue;
if (isdigit(ch) || (ch >= 'A' && ch <= 'F')) {
val= ch >= 'A' ? ch - 'A' + 10 : ch - '0';
ch= *fmt++;
if (!isdigit(ch) && !(ch >= 'A' && ch <= 'F'))
error("JIT error: Bad format for add() routine");
val= (val*16) + (ch >= 'A' ? ch - 'A' + 10 : ch - '0');
*r_cp++= val;
continue;
}
if (ch != '%')
error("JIT error: add() routine bad format string");
switch (ch= *fmt++) {
case 'C':
val= va_arg(ap, int);
r_loop= val;
*r_cp++= val;
*r_cp++= val>>8;
*r_cp++= val>>16;
*r_cp++= val>>24;
break;
case 'L':
if (r_lab) error("JIT error: two stacked %L formats");
r_lab= r_cp;
break;
case 'R':
if (!r_lab) error("JIT error: %R without matching %L");
val= r_lab - (r_cp+1);
if (val < -128) error("JIT error: %R too far from %L");
*r_cp++= val;
r_lab= 0;
break;
case 'D':
val= va_arg(ap, int) - r_edx;
if (val < -128 || val >= 128) error("JIT error: %%edx offset out of range");
if (val == 0)
r_cp[-1] ^= 0x40;
else
*r_cp++= val;
if (*fmt == '+') {
fmt++;
if (val >= 120) {
*r_cp++= 0x83; // addl $120,%edx
*r_cp++= 0xC2;
*r_cp++= 0x78;
r_edx += 120;
}
}
break;
case 'A':
val= va_arg(ap, int) - r_eax;
if (val < -128 || val >= 128) error("JIT error: %%eax offset out of range");
if (val == 0)
r_cp[-1] ^= 0x40;
else
*r_cp++= val;
if (*fmt == '+') {
fmt++;
if (val >= 120) {
*r_cp++= 0x83; // addl $120,%eax
*r_cp++= 0xC0;
*r_cp++= 0x78;
r_eax += 120;
}
}
break;
case '=':
val= va_arg(ap, int) - r_edx;
if (val != 0) {
if (val < -128 || val >= 128)
error("JIT error: %%= adjust for %%edx is out of range");
*r_cp++= 0x83; // addl $120,%edx
*r_cp++= 0xC2;
*r_cp++= val;
r_edx += val * (r_lab ? r_loop : 1);
}
val= va_arg(ap, int) - r_eax;
if (val != 0) {
if (val < -128 || val >= 128)
error("JIT error: %%= adjust for %%edx is out of range");
*r_cp++= 0x83; // addl $120,%edx
*r_cp++= 0xC0;
*r_cp++= val;
r_eax += val * (r_lab ? r_loop : 1);
}
break;
default:
error("JIT error: bad format for add()");
}
}
}
//
// Create an instance of a filter, ready to run. This returns a
// void* handle, and a JIT-compiled function to call to execute
// the filter. (The functions are cached, so if several versions
// of the same filter are generated with different parameters, it
// is likely that the same routine will end up servicing all of
// them).
//
// Working buffers for the filter instances must be allocated
// separately using fid_run_newbuf(). This allows many
// simultaneous instances of the same filter to be run.
//
// The sub-filters are executed in the precise order that they
// are given. This may lead to some inefficiency, because
// normally when an IIR filter is followed by an FIR filter, the
// buffers can be shared. So, if the sub-filters are not in
// IIR/FIR pairs, then extra memory accesses are required.
//
// In any case, factors are extracted from IIR filters (so that
// the first coefficient is 1), and single-element FIR filters
// are merged into the global gain factor, and are ignored.
//
// The returned handle must be released using fid_run_free().
//
// Loop the generated code above LOOP repeats (8)
#define LOOP 8
void *
fid_run_new(FidFilter *filt, double (**funcpp)(void *,double)) {
FidFilter *ff;
double *dp;
double gain= 1.0;
int a, val;
double *coef_tmp;
char *rout_tmp;
int coef_cnt, coef_max;
int rout_cnt, rout_max;
int filt_cnt= 0;
Run *rr;
int o_buf= 1; // Current offset into working buffer
int o_coef= 1; // Current offset into coefficient array
int hash;
Routine *rout;
for (ff= filt; ff->len; ff= FFNEXT(ff))
filt_cnt += ff->len;
// Allocate rough worst-case sizes for temporary arrays
coef_tmp= ALLOC_ARR(coef_max= filt_cnt+1, double);
rout_tmp= ALLOC_ARR(rout_max= filt_cnt * 16 + 20 + 32, char);
dp= coef_tmp+o_coef; // Leave space to put gain back in later
// Setup JIT globals
r_buf= rout_tmp;
r_end= rout_tmp + rout_max;
r_cp= r_buf;
r_lab= 0;
r_loop= 0;
r_edx= 0;
r_eax= 0;
STARTUP; // Setup iir/fir running totals on stack, apply gain
// Generate command and coefficient lists
while (filt->len) {
int n_iir, n_fir, cnt;
double *iir, *fir;
double adj;
if (filt->typ == 'F' && filt->len == 1) {
gain *= filt->val[0];
filt= FFNEXT(filt);
continue;
}
if (filt->typ == 'F') {
iir= 0; n_iir= 0;
fir= filt->val; n_fir= filt->len;
filt= FFNEXT(filt);
} else if (filt->typ == 'I') {
iir= filt->val; n_iir= filt->len;
fir= 0; n_fir= 0;
filt= FFNEXT(filt);
while (filt->typ == 'F' && filt->len == 1) {
gain *= filt->val[0];
filt= FFNEXT(filt);
}
if (filt->typ == 'F') {
fir= filt->val; n_fir= filt->len;
filt= FFNEXT(filt);
}
} else
error("Internal error: fid_run_new can only handle IIR + FIR types");
// Okay, we now have an IIR/FIR pair to process, possibly with
// n_iir or n_fir == 0 if one half is missing
cnt= n_iir > n_fir ? n_iir : n_fir;
if (n_iir) {
adj= 1.0 / iir[0];
gain *= adj;
}
// Sort out any trailing IIR coefficients where there are more
// IIR than FIR
if (cnt > n_fir) {
a= cnt - (n_fir ? n_fir : 1);
if (a >= LOOP) {
FOR(a, o_buf, o_coef);
IIR(o_coef); o_coef++;
GETB(o_buf); o_buf++;
NEXT(o_buf, o_coef);
o_buf += (a-1);
o_coef += (a-1);
while (a-- > 0) *dp++= iir[--cnt] * adj;
} else while (a-- > 0) {
*dp++= iir[--cnt] * adj;
IIR(o_coef); o_coef++;
GETB(o_buf); o_buf++;
}
}
// Sort out any trailing FIR coefficients where there are more
// FIR than IIR
if (cnt > n_iir) {
a= cnt - (n_iir ? n_iir : 1);
if (a >= LOOP) {
FOR(a, o_buf, o_coef);
FIR(o_coef); o_coef++;
GETB(o_buf); o_buf++;
NEXT(o_buf, o_coef);
o_buf += (a-1);
o_coef += (a-1);
while (a-- > 0) *dp++= fir[--cnt];
} else while (a-- > 0) {
val= fir[--cnt];
if (val == -2.0) FIR_M2;
else if (val == -1.0) FIR_M1;
else if (val == 0.0) FIR_0;
else if (val == 1.0) FIR_P1;
else if (val == 2.0) FIR_P2;
else { *dp++= val; FIR(o_coef); o_coef++; }
GETB(o_buf); o_buf++;
}
}
// Sort out any common IIR/FIR coefficients remaining
if (cnt > 1) {
a= cnt - 1;
if (a >= LOOP) {
FOR(a, o_buf, o_coef);
FIRc(o_coef); o_coef++;
IIR(o_coef); o_coef++;
GETB(o_buf); o_buf++;
NEXT(o_buf, o_coef);
o_buf += (a-1);
o_coef += 2 * (a-1);
while (a-- > 0) {
*dp++= fir[--cnt] * adj;
*dp++= iir[cnt] * adj;
}
} else while (a-- > 0) {
val= fir[--cnt];
if (val == -2.0) FIRc_M2;
else if (val == -1.0) FIRc_M1;
else if (val == 0.0) ;
else if (val == 1.0) FIRc_P1;
else if (val == 2.0) FIRc_P2;
else { *dp++= val; FIRc(o_coef); o_coef++; }
*dp++= iir[cnt] * adj;
IIR(o_coef); o_coef++;
GETB(o_buf); o_buf++;
}
}
// Handle the final element, according to whether there was any
// FIR activity in this filter stage
PUTB(o_buf-1);
if (n_fir) {
if (fir[0] == 1.0) { FIREND_P1; }
else if (fir[0] == -1.0) { FIREND_M1; }
else { *dp++= fir[0]; FIREND(o_coef); o_coef++; }
}
}
coef_tmp[0]= gain;
RETURN;
// Sanity checks
coef_cnt= dp-coef_tmp;
rout_cnt= r_cp-r_buf;
if (coef_cnt > coef_max ||
rout_cnt > rout_max)
error("fid_run_new internal error; arrays exceeded");
// Now generate a hash of the code we've created, and see if we've
// already got a cached version of that routine
hash= HASH(rout_tmp, rout_cnt);
for (rout= r_list; rout; rout= rout->nxt) {
if (rout->hash == hash &&
rout->len == rout_cnt &&
0 == memcmp(rout->code, rout_tmp, rout_cnt))
break;
}
if (!rout) {
rout= Alloc(sizeof(Routine) + rout_cnt);
rout->nxt= r_list; r_list= rout;
rout->ref= 0;
rout->hash= hash;
rout->code= (char*)(rout+1);
rout->len= rout_cnt;
memcpy(rout->code, rout_tmp, rout_cnt);
// Maybe flush caches at this point on processors other than x86
}
free(rout_tmp);
// Allocate the final Run structure to return
rr= (Run*)Alloc(sizeof(Run) +
coef_cnt*sizeof(double));
rr->magic= 0x64966325;
rr->n_buf= o_buf;
rr->coef= (double*)(rr+1);
memcpy(rr->coef, coef_tmp, coef_cnt*sizeof(double));
rr->rout= rout;
rout->ref++;
free(coef_tmp);
*funcpp= (void*)rout->code;
return rr;
}
//
// Create a new instance of the given filter
//
void *
fid_run_newbuf(void *run) {
Run *rr= run;
RunBuf *rb;
if (rr->magic != 0x64966325)
error("Bad handle passed to fid_run_newbuf()");
rb= (RunBuf*)ALLOC_ARR(rr->n_buf, double);
rb->coef= rr->coef;
rb->mov_cnt= (rr->n_buf-1) * sizeof(double) / 4;
return rb;
}
//
// Delete an instance
//
void
fid_run_freebuf(void *runbuf) {
free(runbuf);
}
//
// Delete the filter
//
void
fid_run_free(void *run) {
Routine *rout= ((Run*)run)->rout;
rout->ref--;
if (!rout->ref) {
// Delete the routine out of the cache
Routine *p, **prvp;
for (prvp= &r_list; (p= *prvp); prvp= &p->nxt)
if (p == rout) {
*prvp= p->nxt;
break;
}
free(rout);
}
free(run);
}
//
// Dump all the routines in memory
//
void
fid_run_dump(FILE *out) {
Routine *rr;
int a, cnt= 0;
fprintf(out,
" .file \"fid_run_dump.s\"\n"
" .version \"01.01\"\n"
".text\n"
" .align 4\n");
for (rr= r_list; rr; rr= rr->nxt, cnt++) {
fprintf(out,
".globl process_%d\n"
" .type process_%d,@function\n"
"process_%d:\n",
cnt, cnt, cnt);
for (a= 0; a<rr->len; a++)
fprintf(out, " .byte 0x%02X\n", 255&rr->code[a]);
fprintf(out,
".Lfe1%d:\n"
" .size process_%d,.Lfe1%d-process_%d\n",
cnt, cnt, cnt, cnt);
}
}
//
// Hashing function. Overkill for this job, but might as well
// use a good one as it's available. See below for credits.
//
typedef unsigned long int ub4; /* unsigned 4-byte quantities */
typedef unsigned char ub1; /* unsigned 1-byte quantities */
#define hashsize(n) ((ub4)1<<(n))
#define hashmask(n) (hashsize(n)-1)
/*
--------------------------------------------------------------------
mix -- mix 3 32-bit values reversibly.
For every delta with one or two bits set, and the deltas of all three
high bits or all three low bits, whether the original value of a,b,c
is almost all zero or is uniformly distributed,
* If mix() is run forward or backward, at least 32 bits in a,b,c
have at least 1/4 probability of changing.
* If mix() is run forward, every bit of c will change between 1/3 and
2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
mix() was built out of 36 single-cycle latency instructions in a
structure that could supported 2x parallelism, like so:
a -= b;
a -= c; x = (c>>13);
b -= c; a ^= x;
b -= a; x = (a<<8);
c -= a; b ^= x;
c -= b; x = (b>>13);
...
Unfortunately, superscalar Pentiums and Sparcs can't take advantage
of that parallelism. They've also turned some of those single-cycle
latency instructions into multi-cycle latency instructions. Still,
this is the fastest good hash I could find. There were about 2^^68
to choose from. I only looked at a billion or so.
--------------------------------------------------------------------
*/
#define mix(a,b,c) \
{ \
a -= b; a -= c; a ^= (c>>13); \
b -= c; b -= a; b ^= (a<<8); \
c -= a; c -= b; c ^= (b>>13); \
a -= b; a -= c; a ^= (c>>12); \
b -= c; b -= a; b ^= (a<<16); \
c -= a; c -= b; c ^= (b>>5); \
a -= b; a -= c; a ^= (c>>3); \
b -= c; b -= a; b ^= (a<<10); \
c -= a; c -= b; c ^= (b>>15); \
}
/*
--------------------------------------------------------------------
hash() -- hash a variable-length key into a 32-bit value
k : the key (the unaligned variable-length array of bytes)
len : the length of the key, counting by bytes
initval : can be any 4-byte value
Returns a 32-bit value. Every bit of the key affects every bit of
the return value. Every 1-bit and 2-bit delta achieves avalanche.
About 6*len+35 instructions.
The best hash table sizes are powers of 2. There is no need to do
mod a prime (mod is sooo slow!). If you need less than 32 bits,
use a bitmask. For example, if you need only 10 bits, do
h = (h & hashmask(10));
In which case, the hash table should have hashsize(10) elements.
If you are hashing n strings (ub1 **)k, do it like this:
for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
code any way you wish, private, educational, or commercial. It's free.
See http://burtleburtle.net/bob/hash/evahash.html
Use for hash table lookup, or anything where one collision in 2^^32 is
acceptable. Do NOT use for cryptographic purposes.
--------------------------------------------------------------------
*/
static ub4
do_hash(register ub1 *k, /* the key */
register ub4 length, /* the length of the key */
register ub4 initval) /* the previous hash, or an arbitrary value */
{
register ub4 a,b,c,len;
/* Set up the internal state */
len = length;
a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
c = initval; /* the previous hash value */
/*---------------------------------------- handle most of the key */
while (len >= 12)
{
a += (k[0] +((ub4)k[1]<<8) +((ub4)k[2]<<16) +((ub4)k[3]<<24));
b += (k[4] +((ub4)k[5]<<8) +((ub4)k[6]<<16) +((ub4)k[7]<<24));
c += (k[8] +((ub4)k[9]<<8) +((ub4)k[10]<<16)+((ub4)k[11]<<24));
mix(a,b,c);
k += 12; len -= 12;
}
/*------------------------------------- handle the last 11 bytes */
c += length;
switch(len) /* all the case statements fall through */
{
case 11: c+=((ub4)k[10]<<24);
case 10: c+=((ub4)k[9]<<16);
case 9 : c+=((ub4)k[8]<<8);
/* the first byte of c is reserved for the length */
case 8 : b+=((ub4)k[7]<<24);
case 7 : b+=((ub4)k[6]<<16);
case 6 : b+=((ub4)k[5]<<8);
case 5 : b+=k[4];
case 4 : a+=((ub4)k[3]<<24);
case 3 : a+=((ub4)k[2]<<16);
case 2 : a+=((ub4)k[1]<<8);
case 1 : a+=k[0];
/* case 0: nothing left to add */
}
mix(a,b,c);
/*-------------------------------------------- report the result */
return c;
}
// END //