|
| 1 | +/* |
| 2 | + * dp[i] = max amount of attractions you can visit starting from the start location |
| 3 | + * assuming you can only travel right and you can only take i steps |
| 4 | + * |
| 5 | + * Note that the rightmost location you'll optimally visit is increasing as i increases |
| 6 | + * So we can do a Divide & Conquer DP. We'll need to be able to answer the query |
| 7 | + * "what's the sum of the largest x numbers in the range that we're currently considering |
| 8 | + * in our divide & conquer DP?" the range we consider is [start...rightmostLocation] |
| 9 | + * |
| 10 | + * We can do this with a segtree. Sort all the attractions such that they're nondecreasing. |
| 11 | + * Mark all attractions as "inactive." The segtree returns the sum of the first k "active" |
| 12 | + * numbers. |
| 13 | + * As we do divide & conquer DP, mark relevant locations as "active" so that all the numbers |
| 14 | + * in the range [start...mid] are always activated. Then, calculate the number of |
| 15 | + * actions we have left assuming we travel to a certain rightmost location, and query |
| 16 | + * the segtree to find the number of attractions we can visit. |
| 17 | + * |
| 18 | + * We'll need to compute dp[i] for traveling right without needing to return to the start, |
| 19 | + * traveling right while needing to return to the start, traveling left without needing |
| 20 | + * to return to the start, and traveling left while needing to return to the start. |
| 21 | + * |
| 22 | + * Finally we just brute force all possible arrangements of how many steps we allocate |
| 23 | + * to going left and going right, as well as whether we go left then right or right then left. |
| 24 | + */ |
| 25 | + |
| 26 | +#include <bits/stdc++.h> |
| 27 | +#include "holiday.h" |
| 28 | + |
| 29 | +using namespace std; |
| 30 | +using ll = long long; |
| 31 | + |
| 32 | +#define f first |
| 33 | +#define s second |
| 34 | +#define ii pair<int, int> |
| 35 | +#define pb push_back |
| 36 | +#define mp make_pair |
| 37 | +#define all(x) x.begin(), x.end() |
| 38 | + |
| 39 | +const int maxn = 100000; |
| 40 | +int n, start, d; |
| 41 | + |
| 42 | +int stIndex[maxn]; |
| 43 | +struct node { |
| 44 | + ll val; |
| 45 | + int initVal; |
| 46 | + int ct; |
| 47 | +} st[maxn*4]; |
| 48 | + |
| 49 | +void buildST(int attraction[]) { |
| 50 | + vector<ii> attractions; |
| 51 | + for (int i = 0; i < n; i++) { |
| 52 | + attractions.pb(mp(attraction[i], i)); |
| 53 | + } |
| 54 | + sort(all(attractions)); |
| 55 | + reverse(all(attractions)); |
| 56 | + int i = 0; |
| 57 | + for (auto x : attractions) { |
| 58 | + stIndex[x.s] = i; |
| 59 | + i++; |
| 60 | + } |
| 61 | + auto build = [&](int p, int i, int j, const auto &build)->void { |
| 62 | + if (i == j) { |
| 63 | + st[p] = node{0, attractions[i].f, 0}; |
| 64 | + } else { |
| 65 | + build(p*2, i, (i+j)/2, build); |
| 66 | + build(p*2+1, (i+j)/2+1, j, build); |
| 67 | + st[p] = node{0,-1,0}; |
| 68 | + } |
| 69 | + }; |
| 70 | + build(1, 0, n-1, build); |
| 71 | +} |
| 72 | + |
| 73 | +void upd(int p, int i, int j, int k, bool isActive) { |
| 74 | + if (i > k || j < k) return; |
| 75 | + if (i == j && i == k) { |
| 76 | + st[p].val = isActive ? st[p].initVal : 0; |
| 77 | + st[p].ct = isActive; |
| 78 | + } else { |
| 79 | + upd(p*2, i, (i+j)/2, k, isActive); |
| 80 | + upd(p*2+1, (i+j)/2+1, j, k, isActive); |
| 81 | + st[p].val = st[p*2].val + st[p*2+1].val; |
| 82 | + st[p].ct = st[p*2].ct + st[p*2+1].ct; |
| 83 | + } |
| 84 | +} |
| 85 | + |
| 86 | +ll qry(int p, int i, int j, int k) { |
| 87 | + if (st[p].ct <= k) return st[p].val; |
| 88 | + if (i == j) return k <= 0 ? 0 : st[p].val; |
| 89 | + if (st[p*2].ct >= k) return qry(p*2, i, (i+j)/2, k); |
| 90 | + return st[p*2].val + qry(p*2+1, (i+j)/2+1, j, k - st[p*2].ct); |
| 91 | +} |
| 92 | + |
| 93 | +vector<ll> oneWayLeft(3*maxn), oneWayRight(3*maxn); |
| 94 | +vector<ll> twoWayLeft(3*maxn), twoWayRight(3*maxn); |
| 95 | + |
| 96 | +void compute(int l, int r, int optl, int optr, vector<ll> &dp, int isTwoWay = 0) { |
| 97 | + if (l > r) return; |
| 98 | + |
| 99 | + int mid = (l+r)/2; |
| 100 | + ll best = -1; int bestTransition = -1; |
| 101 | + for (int k = optl; k <= optr; k++) { |
| 102 | + upd(1, 0, n-1, stIndex[k], 1); |
| 103 | + int stepsRemaining = mid - (k - start) * (isTwoWay ? 2 : 1); |
| 104 | + |
| 105 | + ll val = qry(1, 0, n-1, stepsRemaining); |
| 106 | + if (best < val) { |
| 107 | + best = val; |
| 108 | + bestTransition = k; |
| 109 | + } |
| 110 | + } |
| 111 | + |
| 112 | + dp[mid] = best; |
| 113 | + |
| 114 | + for (int k = bestTransition+1; k <= optr; k++) { |
| 115 | + upd(1, 0, n-1, stIndex[k], 0); |
| 116 | + } |
| 117 | + compute(mid+1, r, bestTransition, optr, dp, isTwoWay); |
| 118 | + |
| 119 | + for (int k = optl; k <= bestTransition; k++) { |
| 120 | + upd(1, 0, n-1, stIndex[k], 0); |
| 121 | + } |
| 122 | + compute(l, mid-1, optl, bestTransition, dp, isTwoWay); |
| 123 | +} |
| 124 | + |
| 125 | +long long int findMaxAttraction(int N, int Start, int D, int attraction[]) { |
| 126 | + n = N, start = Start, d = D; |
| 127 | + int backup = attraction[start]; |
| 128 | + |
| 129 | + buildST(attraction); |
| 130 | + compute(0, d, start, n-1, oneWayRight); |
| 131 | + |
| 132 | + attraction[start] = 0; |
| 133 | + reverse(attraction, attraction+N); |
| 134 | + buildST(attraction); |
| 135 | + start = n - start - 1; |
| 136 | + compute(0, d, start, n-1, oneWayLeft); |
| 137 | + |
| 138 | + reverse(attraction, attraction+N); |
| 139 | + start = n - start - 1; |
| 140 | + attraction[start] = backup; |
| 141 | + buildST(attraction); |
| 142 | + compute(0, d, start, n-1, twoWayRight, 1); |
| 143 | + |
| 144 | + attraction[start] = 0; |
| 145 | + reverse(attraction, attraction+N); |
| 146 | + start = n - start - 1; |
| 147 | + buildST(attraction); |
| 148 | + compute(0, d, start, n-1, twoWayLeft, 1); |
| 149 | + |
| 150 | + ll best = 0; |
| 151 | + for (int x = 0; x <= d; x++) { |
| 152 | + best = max(best, max(oneWayRight[x] + twoWayLeft[d-x], twoWayRight[x] + oneWayLeft[d-x])); |
| 153 | + } |
| 154 | + |
| 155 | + return best; |
| 156 | +} |
| 157 | + |
0 commit comments