|
2 | 2 | pubs:
|
3 | 3 | - title: Autoscheduling for Sparse Tensor Algebra with an Asymptotic Cost Model
|
4 | 4 | authors: Peter Ahrens, Fredrik Kjolstad, and Saman Amarasinghe
|
| 5 | + venue: PLDI 2022 |
5 | 6 | is_thesis: false
|
6 | 7 | paper_link: https://arxiv.org/pdf/2111.14947.pdf
|
7 | 8 | abstract: >
|
|
18 | 19 | }
|
19 | 20 | - title: "DISTAL: The Distributed Tensor Algebra Compiler"
|
20 | 21 | authors: Rohan Yadav, Alex Aiken, and Fredrik Kjolstad
|
| 22 | + venue: PLDI 2022 |
21 | 23 | is_thesis: false
|
22 | 24 | paper_link: https://arxiv.org/pdf/2203.08069.pdf
|
23 | 25 | abstract: >
|
|
32 | 34 | }
|
33 | 35 | - title: Unified Compilation for Lossless Compression and Sparse Computing
|
34 | 36 | authors: Daniel Donenfeld, Stephen Chou, and Saman Amarasinghe
|
| 37 | + venue: CGO 2022 |
35 | 38 | is_thesis: false
|
36 | 39 | paper_link: /files/donenfeld-cgo22-taco-compression.pdf
|
37 | 40 | youtube: uU3brPcwUos
|
|
52 | 55 | pubs:
|
53 | 56 | - title: Dynamic Sparse Tensor Algebra Compilation
|
54 | 57 | authors: Stephen Chou and Saman Amarasinghe
|
| 58 | + venue: arXiv Preprint |
55 | 59 | is_thesis: false
|
56 | 60 | paper_link: /files/chou-arxiv-taco-dynamic.pdf
|
57 | 61 | abstract: >
|
|
71 | 75 | }
|
72 | 76 | - title: Compilation of Sparse Array Programming Models
|
73 | 77 | authors: Rawn Henry*, Olivia Hsu*, Rohan Yadav, Stephen Chou, Kunle Olukotun, Saman Amarasinghe, and Fredrik Kjolstad
|
| 78 | + venue: OOPSLA 2021 |
74 | 79 | is_thesis: false
|
75 | 80 | paper_link: /files/henry_hsu-oopsla21-taco-array.pdf
|
76 | 81 | youtube: sY_jEfaP8f4
|
|
102 | 107 | pubs:
|
103 | 108 | - title: A Sparse Iteration Space Transformation Framework for Sparse Tensor Algebra
|
104 | 109 | authors: Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson, Stephen Chou, Shoaib Kamil, Saman Amarasinghe, and Fredrik Kjolstad
|
| 110 | + venue: OOPSLA 2020 |
105 | 111 | is_thesis: false
|
106 | 112 | paper_link: /files/senanayake-oopsla20-taco-scheduling.pdf
|
107 | 113 | youtube: 0wJsGWA5pTU
|
|
127 | 133 | numpages = {30},
|
128 | 134 | keywords = {Sparse Tensor Algebra, Sparse Iteration Spaces, Optimizing Transformations}
|
129 | 135 | }
|
| 136 | + - title: Sparse Tensor Transpositions |
| 137 | + authors: Suzanne Mueller, Peter Ahrens, Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe |
| 138 | + venue: SPAA 2020 |
| 139 | + is_thesis: false |
| 140 | + paper_link: /files/mueller-spaa20-taco-transpositions.pdf |
| 141 | + youtube: rUtw6vLZR-g |
| 142 | + abstract: > |
| 143 | + We present a new algorithm for transposing sparse tensors called Quesadilla. The algorithm converts the sparse tensor data structure to a list of coordinates and sorts it with a fast multi-pass radix algorithm that exploits knowledge of the requested transposition and the tensors input partial coordinate ordering to provably minimize the number of parallel partial sorting passes. We evaluate both a serial and a parallel implementation of Quesadilla on a set of 19 tensors from the FROSTT collection, a set of tensors taken from scientific and data analytic applications. We compare Quesadilla and a generalization, Top-2-sadilla to several state of the art approaches, including the tensor transposition routine used in the SPLATT tensor factorization library. In serial tests, Quesadilla was the best strategy for 60% of all tensor and transposition combinations and improved over SPLATT by at least 19% in half of the combinations. In parallel tests, at least one of Quesadilla or Top-2-sadilla was the best strategy for 52% of all tensor and transposition combinations. |
| 144 | + bibtex: > |
| 145 | + @inproceedings{mueller:2020:transposition, |
| 146 | + author = {Mueller, Suzanne and Ahrens, Peter and Chou, Stephen and Kjolstad, Fredrik and Amarasinghe, Saman}, |
| 147 | + title = {Sparse Tensor Transpositions}, |
| 148 | + year = {2020}, |
| 149 | + isbn = {9781450369350}, |
| 150 | + publisher = {Association for Computing Machinery}, |
| 151 | + address = {New York, NY, USA}, |
| 152 | + url = {https://doi.org/10.1145/3350755.3400245}, |
| 153 | + doi = {10.1145/3350755.3400245}, |
| 154 | + booktitle = {Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures}, |
| 155 | + pages = {559–561}, |
| 156 | + numpages = {3}, |
| 157 | + keywords = {COO, sorting, radix sort, transposition, sparse tensors}, |
| 158 | + location = {Virtual Event, USA}, |
| 159 | + series = {SPAA '20} |
| 160 | + } |
130 | 161 | - title: Automatic Generation of Efficient Sparse Tensor Format Conversion Routines
|
131 | 162 | authors: Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe
|
| 163 | + venue: PLDI 2020 |
132 | 164 | is_thesis: false
|
133 | 165 | paper_link: /files/chou-pldi20-taco-conversion.pdf
|
134 | 166 | slide_link: /files/chou-pldi20-slides.pdf
|
|
154 | 186 | location = {London, UK},
|
155 | 187 | series = {PLDI 2020}
|
156 | 188 | }
|
157 |
| - - title: Sparse Tensor Transpositions |
158 |
| - authors: Suzanne Mueller, Peter Ahrens, Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe |
159 |
| - is_thesis: false |
160 |
| - paper_link: /files/mueller-spaa20-taco-transpositions.pdf |
161 |
| - youtube: rUtw6vLZR-g |
162 |
| - abstract: > |
163 |
| - We present a new algorithm for transposing sparse tensors called Quesadilla. The algorithm converts the sparse tensor data structure to a list of coordinates and sorts it with a fast multi-pass radix algorithm that exploits knowledge of the requested transposition and the tensors input partial coordinate ordering to provably minimize the number of parallel partial sorting passes. We evaluate both a serial and a parallel implementation of Quesadilla on a set of 19 tensors from the FROSTT collection, a set of tensors taken from scientific and data analytic applications. We compare Quesadilla and a generalization, Top-2-sadilla to several state of the art approaches, including the tensor transposition routine used in the SPLATT tensor factorization library. In serial tests, Quesadilla was the best strategy for 60% of all tensor and transposition combinations and improved over SPLATT by at least 19% in half of the combinations. In parallel tests, at least one of Quesadilla or Top-2-sadilla was the best strategy for 52% of all tensor and transposition combinations. |
164 |
| - bibtex: > |
165 |
| - @inproceedings{mueller:2020:transposition, |
166 |
| - author = {Mueller, Suzanne and Ahrens, Peter and Chou, Stephen and Kjolstad, Fredrik and Amarasinghe, Saman}, |
167 |
| - title = {Sparse Tensor Transpositions}, |
168 |
| - year = {2020}, |
169 |
| - isbn = {9781450369350}, |
170 |
| - publisher = {Association for Computing Machinery}, |
171 |
| - address = {New York, NY, USA}, |
172 |
| - url = {https://doi.org/10.1145/3350755.3400245}, |
173 |
| - doi = {10.1145/3350755.3400245}, |
174 |
| - booktitle = {Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures}, |
175 |
| - pages = {559–561}, |
176 |
| - numpages = {3}, |
177 |
| - keywords = {COO, sorting, radix sort, transposition, sparse tensors}, |
178 |
| - location = {Virtual Event, USA}, |
179 |
| - series = {SPAA '20} |
180 |
| - } |
181 | 189 | - title: A Framework for Computing on Sparse Tensors based on Operator Properties
|
182 | 190 | authors: Rawn Henry
|
| 191 | + venue: MEng Thesis |
183 | 192 | is_thesis: true
|
184 | 193 | paper_link: /files/henry-meng-thesis-taco-array.pdf
|
185 | 194 | abstract: >
|
|
201 | 210 | }
|
202 | 211 | - title: Automatic Optimization of Sparse Tensor Algebra Programs
|
203 | 212 | authors: Ziheng Wang
|
| 213 | + venue: MEng Thesis |
204 | 214 | is_thesis: true
|
205 | 215 | paper_link: /files/wang-meng-thesis-taco-autoscheduling.pdf
|
206 | 216 | abstract: >
|
|
220 | 230 | }
|
221 | 231 | - title: A Unified Iteration Space Transformation Framework for Sparse and Dense Tensor Algebra
|
222 | 232 | authors: Ryan Senanayake
|
| 233 | + venue: MEng Thesis |
223 | 234 | is_thesis: true
|
224 | 235 | paper_link: /files/senanayake-meng-thesis-taco-scheduling.pdf
|
225 | 236 | abstract: >
|
|
239 | 250 | }
|
240 | 251 | - title: Sparse Tensor Transpositions in the Tensor Algebra Compiler
|
241 | 252 | authors: Suzanne Mueller
|
| 253 | + venue: MEng Thesis |
242 | 254 | is_thesis: true
|
243 | 255 | paper_link: /files/mueller-meng-thesis-taco-transposition.pdf
|
244 | 256 | abstract: >
|
|
256 | 268 | }
|
257 | 269 | - title: Sparse Tensor Algebra Compilation
|
258 | 270 | authors: Fredrik Kjolstad
|
| 271 | + venue: PhD Thesis |
259 | 272 | is_thesis: true
|
260 | 273 | paper_link: /files/kjolstad-phd-thesis-taco-compiler.pdf
|
261 | 274 | abstract: >
|
|
277 | 290 | pubs:
|
278 | 291 | - title: A Tensor Algebra Compiler Library Interface and Runtime
|
279 | 292 | authors: Patricio Noyola
|
| 293 | + venue: MEng Thesis |
280 | 294 | is_thesis: true
|
281 | 295 | paper_link: /files/noyola-meng-thesis-taco-interface.pdf
|
282 | 296 | abstract: >
|
|
298 | 312 | }
|
299 | 313 | - title: "SuperTaco: Taco Tensor Algebra Kernels on Distributed Systems Using Legion"
|
300 | 314 | authors: Sachin Dilip Shinde
|
| 315 | + venue: MEng Thesis |
301 | 316 | is_thesis: true
|
302 | 317 | paper_link: /files/shinde-meng-thesis-taco-distributed.pdf
|
303 | 318 | abstract: >
|
|
317 | 332 | }
|
318 | 333 | - title: Tensor Algebra Compilation with Workspaces
|
319 | 334 | authors: Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe
|
| 335 | + venue: CGO 2019 |
320 | 336 | is_thesis: false
|
321 | 337 | paper_link: /files/kjolstad-cgo19-taco-workspaces.pdf
|
322 | 338 | abstract: >
|
|
344 | 360 | pubs:
|
345 | 361 | - title: Format Abstraction for Sparse Tensor Algebra Compilers
|
346 | 362 | authors: Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe
|
| 363 | + venue: OOPSLA 2018 |
347 | 364 | is_thesis: false
|
348 | 365 | paper_link: /files/chou-oopsla18-taco-formats.pdf
|
349 | 366 | slide_link: /files/chou-oopsla18-slides.pdf
|
|
375 | 392 | }
|
376 | 393 | - title: Unified Sparse Formats for Tensor Algebra Compilers
|
377 | 394 | authors: Stephen Chou
|
| 395 | + venue: SM Thesis |
378 | 396 | is_thesis: true
|
379 | 397 | paper_link: /files/chou-sm-thesis-taco-formats.pdf
|
380 | 398 | abstract: >
|
|
398 | 416 | pubs:
|
399 | 417 | - title: The Tensor Algebra Compiler
|
400 | 418 | authors: Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe
|
| 419 | + venue: OOPSLA 2017 |
401 | 420 | is_thesis: false
|
402 | 421 | paper_link: /files/kjolstad-oopsla17-tensor-compiler.pdf
|
403 | 422 | slide_link: /files/kjolstad-oopsla17-slides.pdf
|
|
427 | 446 | }
|
428 | 447 | - title: "taco: A Tool to Generate Tensor Algebra Kernels"
|
429 | 448 | authors: Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and Saman Amarasinghe
|
| 449 | + venue: ASE 2017 |
430 | 450 | is_thesis: false
|
431 | 451 | paper_link: /files/kjolstad-ase17-taco-tools.pdf
|
432 | 452 | youtube: eE38PC2ctFs
|
|
447 | 467 | pubs:
|
448 | 468 | - title: An Investigation of Sparse Tensor Formats for Tensor Libraries
|
449 | 469 | authors: Parker Allen Tew
|
| 470 | + venue: MEng Thesis |
450 | 471 | is_thesis: true
|
451 | 472 | paper_link: /files/tew-meng-thesis-sparse.pdf
|
452 | 473 | abstract: >
|
|
0 commit comments