|
| 1 | +package competitiveProgramming.leetcode.thirtyDaysLeetcodingChallenge.october.week2; |
| 2 | + |
| 3 | +import utils.ArrayUtils; |
| 4 | + |
| 5 | +import java.util.Arrays; |
| 6 | +import java.util.Comparator; |
| 7 | +import java.util.Stack; |
| 8 | + |
| 9 | +/* |
| 10 | +https://leetcode.com/explore/challenge/card/october-leetcoding-challenge/560/week-2-october-8th-october-14th/3490/ |
| 11 | +
|
| 12 | +Minimum Number of Arrows to Burst Balloons |
| 13 | +
|
| 14 | +There are some spherical balloons spread in two-dimensional space. For each balloon, provided input is the start and end coordinates of the horizontal diameter. Since it's horizontal, y-coordinates don't matter, and hence the x-coordinates of start and end of the diameter suffice. The start is always smaller than the end. |
| 15 | +
|
| 16 | +An arrow can be shot up exactly vertically from different points along the x-axis. A balloon with xstart and xend bursts by an arrow shot at x if xstart ≤ x ≤ xend. There is no limit to the number of arrows that can be shot. An arrow once shot keeps traveling up infinitely. |
| 17 | +
|
| 18 | +Given an array points where points[i] = [xstart, xend], return the minimum number of arrows that must be shot to burst all balloons. |
| 19 | +
|
| 20 | +
|
| 21 | +
|
| 22 | +Example 1: |
| 23 | +
|
| 24 | +Input: points = [[10,16],[2,8],[1,6],[7,12]] |
| 25 | +Output: 2 |
| 26 | +Explanation: One way is to shoot one arrow for example at x = 6 (bursting the balloons [2,8] and [1,6]) and another arrow at x = 11 (bursting the other two balloons). |
| 27 | +
|
| 28 | +Example 2: |
| 29 | +
|
| 30 | +Input: points = [[1,2],[3,4],[5,6],[7,8]] |
| 31 | +Output: 4 |
| 32 | +
|
| 33 | +Example 3: |
| 34 | +
|
| 35 | +Input: points = [[1,2],[2,3],[3,4],[4,5]] |
| 36 | +Output: 2 |
| 37 | +
|
| 38 | +Example 4: |
| 39 | +
|
| 40 | +Input: points = [[1,2]] |
| 41 | +Output: 1 |
| 42 | +
|
| 43 | +Example 5: |
| 44 | +
|
| 45 | +Input: points = [[2,3],[2,3]] |
| 46 | +Output: 1 |
| 47 | +
|
| 48 | +
|
| 49 | +
|
| 50 | +Constraints: |
| 51 | +
|
| 52 | + 0 <= points.length <= 104 |
| 53 | + points.length == 2 |
| 54 | + -231 <= xstart < xend <= 231 - 1 |
| 55 | +
|
| 56 | + */ |
| 57 | +public class MinimumNumberOfArrowsToBurst { |
| 58 | + public static void main(String[] args) { |
| 59 | + System.out.println(findMinArrowShots(ArrayUtils.parse2DArray("[[10,16],[2,8],[1,6],[7,12]]"))); |
| 60 | + System.out.println(findMinArrowShots(ArrayUtils.parse2DArray("[[1,2],[3,4],[5,6],[7,8]]"))); |
| 61 | + System.out.println(findMinArrowShots(ArrayUtils.parse2DArray("[[1,2],[2,3],[3,4],[4,5]]"))); |
| 62 | + System.out.println(findMinArrowShots(ArrayUtils.parse2DArray("[[1,2]"))); |
| 63 | + System.out.println(findMinArrowShots(ArrayUtils.parse2DArray("[[2,3],[2,3]]"))); |
| 64 | + } |
| 65 | + |
| 66 | + public static int findMinArrowShots(int[][] points) { |
| 67 | + if(points == null || points.length == 0) return 0; |
| 68 | + |
| 69 | + Stack<int[]> stack = new Stack<>(); |
| 70 | + int count = 1; |
| 71 | + int i = 1; |
| 72 | + |
| 73 | + Arrays.sort(points, Comparator.comparingInt(a -> a[1])); |
| 74 | + stack.push(points[0]); |
| 75 | + |
| 76 | + while (i < points.length) { |
| 77 | + int[] prev = stack.peek(); |
| 78 | + int[] current = points[i]; |
| 79 | + |
| 80 | + if(prev[1] >= current[0]) { //intersection => continue |
| 81 | + stack.push(new int[]{current[0], prev[1]}); |
| 82 | + } else { |
| 83 | + stack.push(current); |
| 84 | + count++; |
| 85 | + } |
| 86 | + i++; |
| 87 | + } |
| 88 | + |
| 89 | + return count; |
| 90 | + } |
| 91 | +} |
0 commit comments