|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Thinking in tensors, writing in PyTorch\n", |
| 8 | + "\n", |
| 9 | + "Hands-on training by [Piotr Migdał](https://p.migdal.pl) (2019). Version for Uniwersytet Śląski.\n", |
| 10 | + "\n", |
| 11 | + "**WORK IN PROGRESS**\n", |
| 12 | + "\n", |
| 13 | + "\n", |
| 14 | + "## Log loss\n", |
| 15 | + "\n", |
| 16 | + "Multi-class logistic regression can be expressed as a shallow neural network consisting of one linear layer and a softmax activation function.\n", |
| 17 | + "\n", |
| 18 | + "For binary classification, we can use sigmoid (a.k.a. logistic function):\n", |
| 19 | + "\n", |
| 20 | + "$$ \\sigma(x) = \\frac{1}{1+\\exp(-x)} $$\n", |
| 21 | + "\n", |
| 22 | + "Softmax function transforms any vector into distribution vector (values in range (0., 1.) that sum up to 1.):\n", |
| 23 | + "$$\\text{softmax}(x_i) = \\frac{\\exp(x_i)}{\\sum_j \\exp(x_j)}$$\n", |
| 24 | + "\n", |
| 25 | + "We use a cross-entropy loss function:\n", |
| 26 | + "$$- \\sum_j p_{j, true} \\log(p_{j, pred})$$\n", |
| 27 | + "\n", |
| 28 | + "Note that we do not state explicitly the softmax function in the model class below. For details see [torch.nn.CrossEntropyLoss](https://pytorch.org/docs/stable/nn.html#torch.nn.CrossEntropyLoss).\n", |
| 29 | + "\n", |
| 30 | + "See also:\n", |
| 31 | + "\n", |
| 32 | + "* [Cross-entropy vs. mean-squared error loss](https://www.reddit.com/r/MachineLearning/comments/8im9eb/d_crossentropy_vs_meansquared_error_loss/)\n", |
| 33 | + "* [Understanding binary cross-entropy / log loss: a visual explanation](https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a)\n", |
| 34 | + "* [Cross entropy](https://pandeykartikey.github.io/machine/learning/basics/2018/05/22/cross-entropy.html) - another explanation\n", |
| 35 | + "* [Softmax function](https://en.wikipedia.org/wiki/Softmax_function)\n", |
| 36 | + "* [Multiclass logistic regression](https://en.wikipedia.org/wiki/Multinomial_logistic_regression)" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 1, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "import numpy as np" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": null, |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [] |
| 54 | + } |
| 55 | + ], |
| 56 | + "metadata": { |
| 57 | + "kernelspec": { |
| 58 | + "display_name": "Python [conda env:py37]", |
| 59 | + "language": "python", |
| 60 | + "name": "conda-env-py37-py" |
| 61 | + }, |
| 62 | + "language_info": { |
| 63 | + "codemirror_mode": { |
| 64 | + "name": "ipython", |
| 65 | + "version": 3 |
| 66 | + }, |
| 67 | + "file_extension": ".py", |
| 68 | + "mimetype": "text/x-python", |
| 69 | + "name": "python", |
| 70 | + "nbconvert_exporter": "python", |
| 71 | + "pygments_lexer": "ipython3", |
| 72 | + "version": "3.7.2" |
| 73 | + }, |
| 74 | + "varInspector": { |
| 75 | + "cols": { |
| 76 | + "lenName": 16, |
| 77 | + "lenType": 16, |
| 78 | + "lenVar": 40 |
| 79 | + }, |
| 80 | + "kernels_config": { |
| 81 | + "python": { |
| 82 | + "delete_cmd_postfix": "", |
| 83 | + "delete_cmd_prefix": "del ", |
| 84 | + "library": "var_list.py", |
| 85 | + "varRefreshCmd": "print(var_dic_list())" |
| 86 | + }, |
| 87 | + "r": { |
| 88 | + "delete_cmd_postfix": ") ", |
| 89 | + "delete_cmd_prefix": "rm(", |
| 90 | + "library": "var_list.r", |
| 91 | + "varRefreshCmd": "cat(var_dic_list()) " |
| 92 | + } |
| 93 | + }, |
| 94 | + "types_to_exclude": [ |
| 95 | + "module", |
| 96 | + "function", |
| 97 | + "builtin_function_or_method", |
| 98 | + "instance", |
| 99 | + "_Feature" |
| 100 | + ], |
| 101 | + "window_display": false |
| 102 | + } |
| 103 | + }, |
| 104 | + "nbformat": 4, |
| 105 | + "nbformat_minor": 2 |
| 106 | +} |
0 commit comments