1
+ {
2
+ "cells" : [
3
+ {
4
+ "cell_type" : " markdown" ,
5
+ "source" : [
6
+ " # AI Course"
7
+ ],
8
+ "metadata" : {}
9
+ },
10
+ {
11
+ "cell_type" : " markdown" ,
12
+ "source" : [
13
+ " ## Contents\n " ,
14
+ " \n " ,
15
+ " ### First part:\n " ,
16
+ " - Search problems\n " ,
17
+ " - Uninformed search strategies:\n " ,
18
+ " - BFS, DFS, UCS, DLS, IDS\n " ,
19
+ " - Informed search strategies:\n " ,
20
+ " - Gready, A-star\n " ,
21
+ " - Local search:\n " ,
22
+ " - Hill climbing, Simulated Annealing, Genetic algorithms\n " ,
23
+ " - Adversarial search and games\n " ,
24
+ " - MiniMax, alpha-beta pruning"
25
+ ],
26
+ "metadata" : {}
27
+ },
28
+ {
29
+ "cell_type" : " markdown" ,
30
+ "source" : [
31
+ " ### Second part:\n " ,
32
+ " - Machine learning\n " ,
33
+ " - Supervised learning:\n " ,
34
+ " - KNN, Naive Bayes, Desision Trees, SVM, Neural Nets\n " ,
35
+ " - Unsupervised learning:\n " ,
36
+ " - k-Means clustering\n " ,
37
+ " - Reinforcement learning\n " ,
38
+ " - Q-learning"
39
+ ],
40
+ "metadata" : {}
41
+ },
42
+ {
43
+ "cell_type" : " markdown" ,
44
+ "source" : [
45
+ " ### Example problems\n " ,
46
+ " - Search:\n " ,
47
+ " - N-Puzzle, N-Queens, TSP\n " ,
48
+ " - Games:\n " ,
49
+ " - Pacman, Chess\n " ,
50
+ " - Learning:\n " ,
51
+ " - Pacman, Chess, etc."
52
+ ],
53
+ "metadata" : {}
54
+ },
55
+ {
56
+ "cell_type" : " markdown" ,
57
+ "source" : [
58
+ " ### Lesson 1: Uninformed (blind) search strategies\n " ,
59
+ " - Implementing data structures like stack, queue and priority queue\n " ,
60
+ " - Implementing N-Puzzle (8-Puzzle)\n " ,
61
+ " - Implementing uninformed search strategies: BFS, DFS, UCS, DLS, IDS\n " ,
62
+ " - Programming assignment"
63
+ ],
64
+ "metadata" : {}
65
+ },
66
+ {
67
+ "cell_type" : " markdown" ,
68
+ "source" : [
69
+ " ### Lesson 2: Informed search strategies\n " ,
70
+ " - Implementing informed search strategies: Greedy, A-star\n " ,
71
+ " - Programming assignment"
72
+ ],
73
+ "metadata" : {}
74
+ },
75
+ {
76
+ "cell_type" : " markdown" ,
77
+ "source" : [
78
+ " ### Lesson 3: Local search\n " ,
79
+ " - Implementing N-Queens and TSP(a graphical implementation)\n " ,
80
+ " - Implementing local search strategies: hill climbing, simulated annealing and genetic algorithms\n " ,
81
+ " - Programming assignment"
82
+ ],
83
+ "metadata" : {}
84
+ },
85
+ {
86
+ "cell_type" : " markdown" ,
87
+ "source" : [
88
+ " ### Lesson 4: Adversarial search and games\n " ,
89
+ " - Implementing Otello\n " ,
90
+ " - Implementing adversarial search algoritms: Minimax and alpha-beta prunning\n " ,
91
+ " - Programming assignment"
92
+ ],
93
+ "metadata" : {}
94
+ },
95
+ {
96
+ "cell_type" : " markdown" ,
97
+ "source" : [
98
+ " ## Prerequisite\n " ,
99
+ " - Basic knowledge of programming (Python)\n " ,
100
+ " - Basic knowledge of data structures and algorithms"
101
+ ],
102
+ "metadata" : {}
103
+ },
104
+ {
105
+ "cell_type" : " markdown" ,
106
+ "source" : [
107
+ " ## After first part:\n " ,
108
+ " - You will have a good understanding of basic AI techniques (solving problems using searching)\n " ,
109
+ " - You will become a real python programmer and most importantly a real programmer!\n " ,
110
+ " - You will see a lot of programming challenges and you will learn how to solve them"
111
+ ],
112
+ "metadata" : {}
113
+ },
114
+ {
115
+ "cell_type" : " markdown" ,
116
+ "source" : [],
117
+ "metadata" : {}
118
+ }
119
+ ],
120
+ "metadata" : {
121
+ "orig_nbformat" : 4 ,
122
+ "language_info" : {
123
+ "name" : " python"
124
+ }
125
+ },
126
+ "nbformat" : 4 ,
127
+ "nbformat_minor" : 2
128
+ }
0 commit comments