-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlepolym.m
44 lines (38 loc) · 1.87 KB
/
lepolym.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function [varargout]=lepolym(n,x)
% lepolym Legendre polynomials of degree up to n, i.e., 0,1, ...,n
% y=lepolym(n,x) returns the Legendre polynomials
% The degree should be a nonnegative integer
% The argument x is a vector be on the closed interval [-1,1];
% [dy,y]=lepolym(n,x) also returns the values of 1st-order
% derivatives of the Legendre polynomials upto n stored in dy
% Note: y (and likewise for dy) saves L_0(x), L_1(x), ...., L_n(x) by rows
% i.e., L_k(x) is the (k+1)th row of the matrix y (or dy)
% Last modified on August 30, 2011
dim=size(x); xx=x; if dim(1)>dim(2), xx=xx'; end; % xx is a row-vector
if nargout==1,
if n==0, varargout{1}=ones(size(xx)); return; end;
if n==1, varargout{1}=[ones(size(xx));xx]; return; end;
polylst=ones(size(xx)); poly=xx; % L_0(x)=1, L_1(x)=x
y=[polylst;poly];
for k=2:n, % Three-term recurrence relation:
polyn=((2*k-1)*xx.*poly-(k-1)*polylst)/k; % kL_k(x)=(2k-1)xL_{k-1}(x)-(k-1)L_{k-2}(x)
polylst=poly; poly=polyn; y=[y;polyn];
end;
varargout{1}=y;
end;
if nargout==2,
if n==0, varargout{2}=ones(size(xx)); varargout{1}=zeros(size(xx)); return;end;
if n==1, varargout{2}=[ones(size(xx));xx];
varargout{1}=[zeros(size(xx));ones(size(xx))]; return; end;
polylst=ones(size(xx)); pderlst=zeros(size(xx));poly=xx; pder=ones(size(xx));
y=[polylst;poly]; dy=[pderlst;pder];
% L_0=1, L_0'=0, L_1=x, L_1'=1
for k=2:n, % Three-term recurrence relation:
polyn=((2*k-1)*xx.*poly-(k-1)*polylst)/k; % kL_k(x)=(2k-1)xL_{k-1}(x)-(k-1)L_{k-2}(x)
pdern=pderlst+(2*k-1)*poly; % L_k'(x)=L_{k-2}'(x)+(2k-1)L_{k-1}(x)
polylst=poly; poly=polyn; y=[y;polyn];
pderlst=pder; pder=pdern; dy=[dy;pdern];
end;
varargout{2}=y; varargout{1}=dy;
end;
return