-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtensor.hpp
1793 lines (1525 loc) · 57.6 KB
/
tensor.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Author: rballester
*
* Created on March 14, 2014, 10:43 AM
*/
// TODO: make asserts optional
// TODO: switch memcpy's to std::copy
// TODO: split in several files
// TODO: make a function out of the unfolding
// TODO: make linear traversals (array[counter]) during scalar operations with OpenMP
#ifndef TENSOR_HPP
#define TENSOR_HPP
#pragma GCC optimize 3 // TEST
#include <vector>
#include <cstddef>
#include <cstdlib>
#include <fstream>
#include <sstream>
#include <cassert>
#include <cfloat>
#include <cmath>
#include <iostream>
#include <cstring>
#include <sys/mman.h>
#include <unistd.h>
#include <fcntl.h>
#include <algorithm>
#include <limits>
#include "lapack/f2c.h"
#include "lapack/clapack.h"
extern "C"
{
#include <cblas.h>
}
//#include <fftw3.h>
#include <omp.h>
#undef min // To undo the effects of some evil header (http://stackoverflow.com/questions/518517/macro-max-requires-2-arguments-but-only-1-given)
#undef max
#define SAFE_ACCESSORS 0
namespace vmml
{
struct sgemm_params // Used for BLAS operations (matrix-matrix product)
{
CBLAS_ORDER order;
CBLAS_TRANSPOSE trans_a;
CBLAS_TRANSPOSE trans_b;
integer m;
integer n;
integer k;
float_t alpha;
float_t* a;
integer lda; //leading dimension of input array matrix left
float_t* b;
integer ldb; //leading dimension of input array matrix right
float_t beta;
float_t* c;
integer ldc; //leading dimension of output array matrix right
};
struct dgemm_params // Used for BLAS operations (matrix-matrix product)
{
CBLAS_ORDER order;
CBLAS_TRANSPOSE trans_a;
CBLAS_TRANSPOSE trans_b;
integer m;
integer n;
integer k;
double_t alpha;
double_t* a;
integer lda; //leading dimension of input array matrix left
double_t* b;
integer ldb; //leading dimension of input array matrix right
double_t beta;
double_t* c;
integer ldc; //leading dimension of output array matrix right
};
struct svd_params // Used for LAPACK operations on singular vectors
{
char jobu;
char jobvt;
integer m;
integer n;
float_t* a;
integer lda;
float_t* s;
float_t* u;
integer ldu;
float_t* vt;
integer ldvt;
float_t* work;
integer lwork;
integer info;
};
struct dsvd_params // Used for LAPACK operations on singular vectors
{
char jobu;
char jobvt;
integer m;
integer n;
double_t* a;
integer lda;
double_t* s;
double_t* u;
integer ldu;
double_t* vt;
integer ldvt;
double_t* work;
integer lwork;
integer info;
};
struct eigs_params // Used for LAPACK operations on eigenvectors
{
char jobz;
char range;
char uplo;
integer n;
float_t* a;
integer lda; //leading dimension of input array
float_t* vl;
float_t* vu;
integer il;
integer iu;
float_t abstol;
integer m; //number of found eigenvalues
float_t* w; //first m eigenvalues
float_t* z; //first m eigenvectors
integer ldz; //leading dimension of z
float_t* work;
integer lwork;
integer* iwork;
integer* ifail;
integer info;
};
struct deigs_params // Used for LAPACK operations on eigenvectors
{
char jobz;
char range;
char uplo;
integer n;
double_t* a;
integer lda; //leading dimension of input array
double_t* vl;
double_t* vu;
integer il;
integer iu;
double_t abstol;
integer m; //number of found eigenvalues
double_t* w; //first m eigenvalues
double_t* z; //first m eigenvectors
integer ldz; //leading dimension of z
double_t* work;
integer lwork;
integer* iwork;
integer* ifail;
integer info;
};
template< typename T = double >
class tensor
{
private:
size_t n_dims;
size_t d[3];
size_t size;
T* array;
void* mmapped_data;
int fd;
void init(size_t n_dims_, size_t d0, size_t d1, size_t d2) // Only for internal constructor use
{
n_dims = n_dims_;
d[0] = d0;
d[1] = d1;
d[2] = d2;
size = d0*d1*d2;
array = new T[size];
}
public:
tensor()
{
init(0,0,0,0);
}
tensor(size_t d0)
{
init(1,d0,1,1);
}
tensor(size_t d0, size_t d1)
{
init(2,d0,d1,1);
}
tensor(size_t d0, size_t d1, size_t d2)
{
init(3,d0,d1,d2);
}
tensor(const tensor<T>& other) { // GENERIC (1-3D)
n_dims = other.get_n_dims();
for (int i = 0; i < n_dims; i++)
d[i] = other.get_dim(i);
for (int i = n_dims; i < 3; i++)
d[i] = 1;
size = other.get_size();
array = new T[other.get_size()];
T* other_array = other.get_array();
for( size_t counter = 0; counter < size; ++counter ) {
// array[counter] = static_cast<T> (other_array[counter]);
array[counter] = other_array[counter];
}
}
~tensor() {
delete[] array;
}
/* Initializers ***************************************************************/
// Fill with zeros
void set_zero()
{
memset(array,0,size*sizeof(T));
}
// Fill with random numbers between -1 and 1
void set_random( int seed = -1 )
{
if ( seed >= 0 )
srand( seed );
double fillValue = 0.0f;
for( size_t counter = 0; counter < size; ++counter )
{
fillValue = rand()/double(RAND_MAX);
array[counter] = static_cast< double >( fillValue ); // TODO type
}
}
// In a matrix, set its columns as the DCT basis functions
void set_dct()
{
assert(n_dims == 2);
#pragma omp parallel for
for( size_t row = 0; row < d[0]; ++row )
{
#pragma omp parallel for
for( size_t col = 0; col < d[1]; ++col )
{
double c = sqrt(2.0/d[0]);
if (col == 0)
c = sqrt(1.0/d[0]);
at(row,col) = c*cos((2.0*row+1)*col*M_PI/(2.0*d[0]));
}
}
}
// Copy the memory from a given buffer
void set_memory(const T* memory) // TODO: make it cast from any type
{
std::copy(memory, memory + size, array);
// memcpy(array,memory,size*sizeof(T));
}
// Set the values to form an N-dimensional gaussian bell
void set_gaussian(double sigma1, double sigma2 = 0, double sigma3 = 0) // GENERIC (1-3D)
{
if (sigma2 <= 0) sigma2 = sigma1;
if (sigma3 <= 0) sigma3 = sigma1;
assert(sigma1 > 0);
double center_row = (d[0]-1)/2.0;
double center_col = (d[1]-1)/2.0;
double center_slice = (d[2]-1)/2.0;
#pragma omp parallel for
for (size_t slice = 0; slice < d[2]; ++slice)
{
#pragma omp parallel for
for (size_t row = 0; row < d[0]; ++row)
{
#pragma omp parallel for
for (size_t col = 0; col < d[1]; ++col)
{
at(row, col, slice) = exp(
-(row-center_row)*(row-center_row)/(2.0*sigma1*sigma1)
-(col-center_col)*(col-center_col)/(2.0*sigma2*sigma2)
-(slice-center_slice)*(slice-center_slice)/(2.0*sigma3*sigma3)
);
}
}
}
*this /= sum();
}
// Approximation of the N-dimensional Laplacian operator
void set_laplacian() // GENERIC (1-3D). After http://en.wikipedia.org/wiki/Discrete_Laplace_operator#Implementation_in_Image_Processing
{
for (size_t i = 0; i < n_dims; ++i)
{
assert(d[i] == 3);
}
for (size_t slice = 0; slice < d[2]; ++slice)
{
for (size_t row = 0; row < d[0]; ++row)
{
for (size_t col = 0; col < d[1]; ++col)
{
size_t n_central = int(row == 1) + int(col == 1) + int(slice == 1);
if (n_central == n_dims) at(row,col,slice) = -2*int(n_dims);
else if (n_central == n_dims-1) at(row,col,slice) = 1;
else at(row,col,slice) = 0;
}
}
}
}
/******************************************************************************/
/* Accessors ******************************************************************/
size_t get_n_dims() const
{
return n_dims;
}
size_t get_dim(size_t dim) const
{
assert(dim < n_dims);
return d[dim];
}
size_t get_size() const
{
return size;
}
T* get_array() const
{
return array;
}
inline T& at( size_t row_index, size_t col_index = 0, size_t slice_index = 0 ) // GENERIC (1-3D)
{
#if SAFE_ACCESSORS
assert(row_index >= 0 and row_index < d[0]);
assert(col_index >= 0 and col_index < d[1]);
assert(slice_index >= 0 and slice_index < d[2]);
#endif
return array[ slice_index*d[0]*d[1] + col_index*d[0] + row_index ];
}
const inline T& at( size_t row_index, size_t col_index = 0, size_t slice_index = 0 ) const // GENERIC (1-3D)
{
#if SAFE_ACCESSORS
assert(row_index >= 0 and row_index < d[0]);
assert(col_index >= 0 and col_index < d[1]);
assert(slice_index >= 0 and slice_index < d[2]);
#endif
return array[ slice_index*d[0]*d[1] + col_index*d[0] + row_index ];
}
// Accessing an index out of bounds gives a 0 result;
const inline T at_general( size_t row_index, size_t col_index = 0, size_t slice_index = 0 ) const // GENERIC (1-3D)
{
if (row_index >= 0 and row_index < d[0] and col_index >= 0 and col_index < d[1] and slice_index >= 0 and slice_index < d[2])
return array[ slice_index*d[0]*d[1] + col_index*d[0] + row_index ];
return 0;
}
// Retrieve a subset of the tensor
void get_sub_tensor(tensor<T>& result, size_t row_offset, size_t col_offset = 0, size_t slice_offset = 0) const // GENERIC (1-3D)
{
assert(row_offset >= 0 and row_offset + result.d[0] <= d[0]);
assert(col_offset >= 0 and col_offset + result.d[1] <= d[1]);
assert(slice_offset >= 0 and slice_offset + result.d[2] <= d[2]);
#pragma omp parallel for
for (size_t slice = 0; slice < result.d[2]; ++slice)
{
#pragma omp parallel for
for (size_t row = 0; row < result.d[0]; ++row)
{
#pragma omp parallel for
for (size_t col = 0; col < result.d[1]; ++col)
{
result.at(row, col, slice)
= at(row_offset + row, col_offset + col, slice_offset + slice);
}
}
}
}
// In this variant, copying regions outside the domain does not cause an error; they are just set to 0 instead. Returns 1 if something was copied, 0 otherwise
bool get_sub_tensor_general(tensor<T>& result, int row_offset, int col_offset = 0, int slice_offset = 0) const // GENERIC (1-3D)
{
result.set_zero();
int src_lower_i = row_offset, src_upper_i = row_offset+result.d[0], dst_lower_i = 0, dst_upper_i = result.d[0];
if (src_lower_i < 0) {
dst_lower_i -= src_lower_i;
src_lower_i = 0;
}
if (src_upper_i > int(d[0])) {
dst_upper_i -= (src_upper_i - d[0]);
src_upper_i = d[0];
}
int src_lower_j = col_offset, src_upper_j = col_offset+result.d[1], dst_lower_j = 0, dst_upper_j = result.d[1];
if (src_lower_j < 0) {
dst_lower_j -= src_lower_j;
src_lower_j = 0;
}
if (src_upper_j > int(d[1])) {
dst_upper_j -= (src_upper_j - d[1]);
src_upper_j = d[1];
}
int src_lower_k = slice_offset, src_upper_k = slice_offset+result.d[2], dst_lower_k = 0, dst_upper_k = result.d[2];
if (src_lower_k < 0) {
dst_lower_k -= src_lower_k;
src_lower_k = 0;
}
if (src_upper_k > int(d[2])) {
dst_upper_k -= (src_upper_k - d[2]);
src_upper_k = d[2];
}
#pragma omp parallel for
for (int slice = dst_lower_k; slice < dst_upper_k; ++slice)
{
#pragma omp parallel for
for (int row = dst_lower_i; row < dst_upper_i; ++row)
{
#pragma omp parallel for
for (int col = dst_lower_j; col < dst_upper_j; ++col)
{
result.at(row,col,slice) = at(row - dst_lower_i + src_lower_i, col - dst_lower_j + src_lower_j, slice - dst_lower_k + src_lower_k);
}
}
}
return (dst_lower_i < dst_upper_i and dst_lower_j < dst_upper_j and dst_lower_k < dst_upper_k);
}
// Sets a region to be the contents of a given tensor
void set_sub_tensor(const tensor<T>& data, size_t row_offset, size_t col_offset = 0, size_t slice_offset = 0) // GENERIC (1-3D)
{
assert(row_offset >= 0 and row_offset + data.d[0] <= d[0]);
assert(col_offset >= 0 and col_offset + data.d[1] <= d[1]);
assert(slice_offset >= 0 and slice_offset + data.d[2] <= d[2]);
#pragma omp parallel for
for (size_t slice = 0; slice < data.d[2]; ++slice)
{
#pragma omp parallel for
for (size_t row = 0; row < data.d[0]; ++row)
{
#pragma omp parallel for
for (size_t col = 0; col < data.d[1]; ++col)
{
at(row_offset + row, col_offset + col, slice_offset + slice)
= data.at(row, col, slice);
}
}
}
}
/******************************************************************************/
/* Scalar operations (i.e. operating element by element) **********************/
// Checks if the tensor is equal (up to some tolerance) to other tensor
const bool equals(const tensor<T> & other, T tol) // GENERIC (1-3D)
{
assert(n_dims == other.n_dims);
assert(d[0] == other.d[0]);
assert(d[1] == other.d[1]);
assert(d[2] == other.d[2]);
for (size_t counter = 0; counter < size; ++counter)
{
if (abs(array[counter] - other.array[counter]) > tol)
return false;
}
return true;
}
const tensor<T>& operator=( const T scalar ) // TODO Can it be shortened using the copy constructor?
{
for( size_t counter = 0; counter < size; ++counter )
{
array[counter] = scalar;
}
return *this;
}
const tensor<T>& operator=( const tensor<T>& other) // TODO Can it be shortened using the copy constructor?
{
assert(this != &other);
n_dims = other.n_dims;
d[0] = other.d[0];
d[1] = other.d[1];
d[2] = other.d[2];
size = other.size;
delete[] array;
array = new T[other.size];
memcpy(array, other.array, size*sizeof(T));
return *this;
}
inline tensor<T> operator+( const tensor<T>& other ) const // GENERIC (1-3D)
{
tensor<T> result( *this );
result += other;
return result;
}
void operator+=( const tensor<T>& other ) // GENERIC (1-3D)
{
assert(n_dims == other.n_dims);
assert(d[0] == other.d[0] and d[1] == other.d[1] and d[2] == other.d[2]);
#pragma omp parallel for
for (size_t counter = 0; counter < size; ++counter)
{
array[counter] += other.array[counter];
}
}
inline tensor<T> operator-( const tensor<T>& other ) const // GENERIC (1-3D)
{
tensor<T> result( *this );
result -= other;
return result;
}
void operator-=( const tensor<T>& other ) // GENERIC (1-3D)
{
assert(n_dims == other.n_dims);
assert(d[0] == other.d[0] and d[1] == other.d[1] and d[2] == other.d[2]);
#pragma omp parallel for
for (size_t counter = 0; counter < size; ++counter)
{
array[counter] -= other.array[counter];
}
}
tensor<T> operator*(T scalar)
{
tensor result(*this);
#pragma omp parallel for
for (size_t counter = 0; counter < size; ++counter)
{
result.array[counter] = array[counter]*scalar;
}
return result;
}
void operator*=(T scalar)
{
#pragma omp parallel for
for (size_t counter = 0; counter < size; ++counter)
{
array[counter] *= scalar;
}
}
tensor<T> operator/(T scalar)
{
tensor result(*this);
#pragma omp parallel for
for (size_t counter = 0; counter < size; ++counter)
{
result.array[counter] = array[counter]/scalar;
}
return result;
}
void operator/=(T scalar)
{
#pragma omp parallel for
for (size_t counter = 0; counter < size; ++counter)
{
array[counter] /= scalar;
}
}
void power(double exponent)
{
#pragma omp parallel for
for (size_t counter = 0; counter < size; ++counter)
{
if (exponent < 1)
assert(array[counter] >= -FLT_EPSILON); // TODO: make epsilon dependent on type of array
array[counter] = pow(array[counter],exponent);
}
}
void absolute_value()
{
#pragma omp parallel for
for (size_t counter = 0; counter < size; ++counter)
{
array[counter] = abs(array[counter]);
}
}
void round_values()
{
#pragma omp parallel for
for (size_t counter = 0; counter < size; ++counter)
{
array[counter] = round(array[counter]);
}
}
// Linearly maps the values in the first range (values outside are treated like the closest interval end) into the second range
void map_histogram(T source_left, T source_right, T target_left, T target_right)
{
for (size_t counter = 0; counter < size; ++counter)
{
array[counter] = std::max<T>(array[counter],source_left);
array[counter] = std::min<T>(array[counter],source_right);
array[counter] = (array[counter]-source_left)/T(source_right-source_left)*(target_right-target_left) + target_left;
}
}
/******************************************************************************/
/* Transformations ************************************************************/
// Matrix transposition
tensor<T> transpose() const
{
assert(n_dims == 2);
tensor<T> result(d[1],d[0]);
#pragma omp parallel for
for( size_t row = 0; row < d[0]; ++row )
{
#pragma omp parallel for
for( size_t col = 0; col < d[1]; ++col )
{
result.at(col,row) = at(row,col);
}
}
return result;
}
// Removes redundant dimensions. E.g. a tensor of size 1 x 4 x 1 x 6 will become 4 x 6
void squeeze()
{
size_t d_tmp[n_dims];
for (size_t i = 0; i < n_dims; ++i)
d_tmp[i] = d[i];
int counter = 0;
for (size_t i = 0; i < n_dims; ++i) {
if (d_tmp[i] > 1) {
d[counter] = d_tmp[i];
++counter;
}
}
for (size_t i = counter; i < n_dims; ++i)
d[i] = 1;
n_dims = counter;
}
// Embeds a tensor of dimension d into R^{d+1}. pos indicates in which position the new coordinate goes
void embed(size_t pos) // NON-GENERIC (2D)
{
assert(n_dims == 2);
assert(pos <= n_dims);
n_dims++;
if (pos == 0) {
d[2] = d[1]; d[1] = d[0]; d[0] = 1;
}
else if (pos == 1) {
d[2] = d[1]; d[1] = 1;
}
}
// Removes the pos-th dimension of a tensor, assuming it has size 1 along it
void unembed(size_t pos) // NON-GENERIC (3D)
{
assert(n_dims == 3);
assert(pos < n_dims);
assert(d[pos] == 1);
n_dims--;
if (pos == 0) {
d[0] = d[1]; d[1] = d[2]; d[2] = 1;
}
else if (pos == 1) {
d[1] = d[2]; d[2] = 1;
}
}
// Downsamples (by integer factors)
tensor<T> downsample(size_t factor1, size_t factor2 = 1, size_t factor3 = 1) const // GENERIC (1-3D)
{
// TODO Provisional version. the factors shouldn't be necessarily a divisor of the dimension sizes
assert(d[0]%factor1 == 0);
assert(d[1]%factor2 == 0);
assert(d[2]%factor3 == 0);
tensor<T> result(d[0]/factor1,d[1]/factor2,d[2]/factor3);
result.n_dims = n_dims;
size_t size_reduction_factor = factor1*factor2*factor3;
#pragma omp parallel for
for (size_t dst_slice = 0; dst_slice < d[2]/factor3; ++dst_slice) {
#pragma omp parallel for
for (size_t dst_row = 0; dst_row < d[0]/factor1; ++dst_row) {
#pragma omp parallel for
for (size_t dst_col = 0; dst_col < d[1]/factor2; ++dst_col) {
double sum = 0;
for (size_t src_slice = dst_slice*factor3; src_slice < (dst_slice+1)*factor3; ++src_slice) {
for (size_t src_row = dst_row*factor1; src_row < (dst_row+1)*factor1; ++src_row) {
for (size_t src_col = dst_col*factor2; src_col < (dst_col+1)*factor2; ++src_col) {
sum += at(src_row,src_col,src_slice);
}
}
}
result.at(dst_row,dst_col,dst_slice) = T(sum/size_reduction_factor);
}
}
}
// tensor<float> gaussian(n*10); // Gaussian version. TODO: probably slower than strictly necessary!
// gaussian.set_gaussian(n);
// tensor<float> copy(*this);
// copy = copy.convolve(gaussian);
// for (size_t col = 0; col < d[1]; ++col) {
// for (size_t bucket = 0; bucket < n_buckets; ++bucket) {
// result.at(bucket,col) = copy.at(int(bucket*n+n/2),col);
// }
// }
return result;
}
// Changes the tensor size. Truncates (or pads with zeros) as necessary to fit the new dimensions
tensor<T> resize(size_t d0, size_t d1 = 1, size_t d2 = 1) const // GENERIC (1-3D)
{
assert(d0 > 0 and d1 > 0 and d2 > 0);
tensor<T> result(d0,d1,d2);
get_sub_tensor_general(result,0,0,0);
return result;
}
// Approximation of the norm of the gradient, after http://en.wikipedia.org/wiki/Sobel_operator
tensor<T> sobel_transformation() // NON-GENERIC
{
assert(n_dims == 3);
tensor<T> result(d[0],d[1],d[2]);
result.set_zero();
tensor<T> h(3), h_prima(3);
h.at(0) = 1; h.at(1) = 2; h.at(2) = 1;
h_prima.at(0) = 1; h_prima.at(1) = 0; h_prima.at(2) = -1;
tensor<T> partial_sum(d[0],d[1],d[2]);
tensor<T> sobel(3,3,3);
tensor<T> lambdas(1);
lambdas.at(0) = 1;
tensor<T> U1(3,1), U2(3,1), U3(3,1);
U1.set_sub_tensor(h_prima,0,0); U2.set_sub_tensor(h,0,0); U3.set_sub_tensor(h,0,0);
sobel.reconstruct_cp(lambdas,U1,U2,U3);
partial_sum = convolve(sobel);
partial_sum.power(2);
result += partial_sum;
U1.set_sub_tensor(h,0,0); U2.set_sub_tensor(h_prima,0,0); U3.set_sub_tensor(h,0,0);
sobel.reconstruct_cp(lambdas,U1,U2,U3);
partial_sum = convolve(sobel);
partial_sum.power(2);
result += partial_sum;
U1.set_sub_tensor(h,0,0); U2.set_sub_tensor(h,0,0); U3.set_sub_tensor(h_prima,0,0);
sobel.reconstruct_cp(lambdas,U1,U2,U3);
partial_sum = convolve(sobel);
partial_sum.power(2);
result += partial_sum;
result.power(0.5);
return result;
}
/*// Columnwise 1D DCT. See http://octave.1599824.n4.nabble.com/How-to-use-FFTW3-DCT-IDCT-to-match-that-of-Octave-td4633005.html
// TODO only works for float
void dct() // GENERIC (1-3D)
{
float *in = (float*)fftwf_malloc(sizeof(float) * d[0]);
float *out = (float*)fftwf_malloc(sizeof(float) * d[0]);
// create plan
fftwf_plan p = fftwf_plan_r2r_1d(d[0], in, out, FFTW_REDFT10, FFTW_MEASURE);
for (size_t slice = 0; slice < d[2]; ++slice) {
for (size_t col = 0; col < d[1]; ++col) {
// Copy into buffer
for (size_t row = 0; row < d[0]; ++row) {
in[row] = at(row,col,slice);
}
// execute plan
fftwf_execute(p);
// Retrieve buffer contents, rescaling
at(0,col,slice) = out[0]/4;
for (size_t row = 1; row < d[0]; ++row) {
at(row,col,slice) = out[row]*sqrt(2)/4;
}
}
}
// free resources
fftwf_destroy_plan(p);
fftwf_free(in);
fftwf_free(out);
}
// Column-wise inverse DCT
// TODO only works for float
void idct() // GENERIC (1-3D)
{
float *in = (float*)fftwf_malloc(sizeof(float) * d[0]);
float *out = (float*)fftwf_malloc(sizeof(float) * d[0]);
// create plan
fftwf_plan p = fftwf_plan_r2r_1d(d[0], in, out, FFTW_REDFT01, FFTW_ESTIMATE);
for (size_t slice = 0; slice < d[2]; ++slice) {
for (size_t col = 0; col < d[1]; ++col) {
// Copy into buffer, scaling
in[0] = at(0,col,slice)*4;
for (size_t row = 1; row < d[0]; ++row) {
in[row] = at(row,col,slice)/(sqrt(2)/4);
}
// execute plan
fftwf_execute(p);
// Retrieve buffer contents, rescaling
for (size_t row = 0; row < d[0]; ++row) {
at(row,col,slice) = out[row]/(2*d[0]);
}
}
}
fftwf_destroy_plan(p);
fftwf_free(in);
fftwf_free(out);
}*/
// GENERIC (1-3D)
template< typename TT >
void cast_from(tensor<TT>& other) {
for( size_t counter = 0; counter < size; ++counter ) {
array[counter] = static_cast<T> (other.get_array()[counter]);
}
}
// VMML_TEMPLATE_STRING
// template< typename TT >
// void
// VMML_TEMPLATE_CLASSNAME::cast_from(const tensor3< I1, I2, I3, TT >& other) {
//#if 0
// typedef tensor3< I1, I2, I3, TT > t3_tt_type;
// typedef typename t3_tt_type::const_iterator tt_const_iterator;
//
// iterator it = begin(), it_end = end();
// tt_const_iterator other_it = other.begin();
// for (; it != it_end; ++it, ++other_it) {
// *it = static_cast<T> (*other_it);
// }
//#else
//#pragma omp parallel for
// for (long slice_idx = 0; slice_idx < (long) I3; ++slice_idx) {
//#pragma omp parallel for
// for (long row_index = 0; row_index < (long) I1; ++row_index) {
//#pragma omp parallel for
// for (long col_index = 0; col_index < (long) I2; ++col_index) {
// at(row_index, col_index, slice_idx) = static_cast<T> (other.at(row_index, col_index, slice_idx));
// }
// }
// }
//
//#endif
// }
// Returns the Summed Area Table (every point is the integral on the rectangular region defined by that point and the origin). Used e.g. to quickly compute histograms
tensor<T> summed_area_table() const // GENERIC (1-3D)
{
assert(n_dims == 3);
tensor<T> result;
result.init(n_dims,d[0],d[1],d[2]);
result.set_zero(); // TODO needed?
for (size_t slice = 0; slice < d[2]; ++slice) {
for (size_t col = 0; col < d[1]; ++col) {
for (size_t row = 0; row < d[0]; ++row) {
result.at(row,col,slice) = at(row,col,slice) + result.at_general(row-1,col,slice) + result.at_general(row,col-1,slice) + result.at_general(row,col,slice-1) - result.at_general(row-1,col-1,slice) - result.at_general(row-1,col,slice-1) - result.at_general(row,col-1,slice-1) + result.at_general(row-1,col-1,slice-1);
}
}
}
return result;
}
// Full Singular Value Decomposition of a matrix
bool svd(tensor<float>& U, tensor<float>& S, tensor<float>& Vt) const // TODO: right now, only for T = float
{
assert(n_dims == 2);
assert(U.d[0] == d[0] and U.d[1] == std::min<float>(d[0],d[1]));
assert(S.d[0] == std::min<float>(d[0],d[1]));
assert(Vt.d[0] == std::min<float>(d[0],d[1]) and Vt.d[1] == d[1]);
svd_params p;
// Workspace query (used to know the necessary buffer size)
p.jobu = 'S';
p.jobvt = 'S';
p.m = d[0];
p.n = d[1];
p.a = NULL;
p.lda = d[0];
p.s = NULL;
p.u = NULL;
p.ldu = d[0];
p.vt = NULL;
p.ldvt = std::min<float>(d[0],d[1]);
p.work = new float_t;
p.lwork = -1;
p.info = 0;
sgesvd_(&p.jobu,&p.jobvt,&p.m,&p.n,p.a,&p.lda,p.s,p.u,&p.ldu,p.vt,&p.ldvt,p.work,&p.lwork,&p.info);
p.lwork = static_cast<integer>( p.work[0] );
delete p.work;
p.work = new float_t[ p.lwork ];
// Real query
p.a = new T[size]; // Lapack destroys the contents of the input matrix
memcpy(p.a,array,size*sizeof(T));
p.u = U.array;
p.s = S.array;
p.vt = Vt.array;
sgesvd_(&p.jobu,&p.jobvt,&p.m,&p.n,p.a,&p.lda,p.s,p.u,&p.ldu,p.vt,&p.ldvt,p.work,&p.lwork,&p.info);
delete[] p.a;
delete[] p.work;
return p.info == 0;
}
// Returns true if the computation went OK, false otherwise
bool left_singular_vectors(tensor<float>& U) const // TODO: right now, only for T = float
{