-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_train.py
206 lines (178 loc) · 8.12 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
from pathlib import Path
import numpy as np
import click
import torch
from torch import optim, nn
from torchvision.datasets import Cityscapes
from torchvision import transforms
from model import Encoder, Decoder, Discriminator
from vgg import Vgg19
from deepfashion import Deepfashion
#import matplotlib.pyplot as plt
from PIL import Image
from tqdm import tqdm
def split_class(x, sem, nc):
return torch.cat([(sem==i).float()*x for i in range(nc)], dim=1)
def extract_class(x, sem, c):
return np.where(sem == c, x, 0)
def extract_other_class(x, sem, c):
return np.where(sem != c, x, 0)
class ToTensor(object):
def __call__(self, target):
target = torch.as_tensor(np.asarray(target), dtype=torch.int64)
target = torch.unsqueeze(target, dim=0)
return target
def update_lr_default(epoch):
if epoch < 100:
return 1.0
elif 100 <= epoch < 200:
return (200 - epoch)/100
return 0
def update_lr_deepfashion(epoch):
if epoch < 60:
return 1.0
elif 60 <= epoch < 100:
return (100 - epoch)/40
return 0
@click.command()
@click.option('--save_path', default='checkpoint/test', type=Path)
@click.option('--checkpoint', default='checkpoint/test/latest.pth', type=Path)
@click.option('--data_root', default='~/data/cityscapes/', type=Path)
@click.option('--batch_size', default=8, type=int)
@click.option('--dataset', default='cityscapes', type=click.Choice(['cityscapes', 'deepfashion']))
def train(save_path, checkpoint, data_root, batch_size, dataset):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
transform = transforms.Compose([transforms.Resize((256, 256)),
transforms.ToTensor()])
target_transform = transforms.Compose([transforms.Resize((256, 256)),
ToTensor()])
if dataset == 'cityscapes':
train_data = Cityscapes(str(data_root), split='train', mode='fine', target_type='semantic', transform=transform, target_transform=transform)
eG = 35
dG = [35, 35, 20, 14, 10, 4, 1]
eC = 8
dC = 280
n_classes = len(Cityscapes.classes)
update_lr = update_lr_default
epoch = 200
else:
train_data = Deepfashion(str(data_root), split='train', transform=transform, target_transform=target_transform)
n_classes = len(Deepfashion.eclasses)
eG = 8
eC = 32
dG = [8, 8, 4, 4, 2, 2, 1]
dC = 160
update_lr = update_lr_deepfashion
epoch = 100
data_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=1)
os.makedirs(save_path, exist_ok=True)
n_channels = 3
encoder = Encoder(n_classes*n_channels, C=eC, G=eG)
decoder = Decoder(8*eG, n_channels, n_classes, C=dC, Gs=dG)
discriminator = Discriminator(n_classes + n_channels)
vgg = Vgg19().eval()
encoder = torch.nn.DataParallel(encoder)
decoder = torch.nn.DataParallel(decoder)
discriminator = torch.nn.DataParallel(discriminator)
vgg = torch.nn.DataParallel(vgg)
gen_opt = optim.Adam(list(encoder.parameters()) + list(decoder.parameters()), lr=0.0001, betas=(0, 0.9))
dis_opt = optim.Adam(discriminator.parameters(), lr=0.0004, betas=(0, 0.9))
gen_scheduler = optim.lr_scheduler.LambdaLR(gen_opt, update_lr)
dis_scheduler = optim.lr_scheduler.LambdaLR(gen_opt, update_lr)
params = ['encoder', 'decoder', 'discriminator', 'gen_opt', 'dis_opt', 'gen_scheduler', 'dis_scheduler']
if os.path.exists(checkpoint):
cp = torch.load(checkpoint)
print(f'Load checkpoint: {checkpoint}')
for param in params:
eval(param).load_state_dict(cp[param])
# encoder.load_state_dict(cp['encoder'])
# decoder.load_state_dict(cp['decoder'])
# discriminator.load_state_dict(cp['discriminator'])
# gen_opt.load_state_dict(cp['gen_opt'])
# dis_opt.load_state_dict(cp['dis_opt'])
# gen_scheduler.load_state_dict(cp['gen_scheduler'])
# dis_scheduler.load_state_dict(cp['dis_scheduler'])
def to_device_optimizer(opt):
for state in opt.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
to_device_optimizer(gen_opt)
to_device_optimizer(dis_opt)
encoder = encoder.to(device)
decoder = decoder.to(device)
discriminator = discriminator.to(device)
vgg = vgg.to(device)
print(len(data_loader))
for epoch in range(epoch):
e_g_loss = []
e_d_loss = []
e_loss_p = []
e_loss_kl = []
e_loss_fm = []
for i, batch in tqdm(enumerate(data_loader)):
x, sem = batch
x = x.to(device)
sem = sem.to(device)
#sem = sem * 255.0
sem = sem.long()
#print(sem[:, :, ::16, ::16])
s = split_class(x, sem, n_classes)
sem_target = sem.clone()
del sem
sem = torch.zeros(x.size()[0], n_classes, sem_target.size()[2], sem_target.size()[3], device=x.device)
sem.scatter_(1, sem_target, 1)
s = s.detach()
s = s.to(device)
mu, sigma = encoder(s)
z = mu + torch.exp(0.5 * sigma) * torch.rand(mu.size(), device=mu.device)
gen = decoder(z, sem)
d_fake = discriminator(gen, sem)
d_real = discriminator(x, sem)
l1loss = nn.L1Loss()
gen_opt.zero_grad()
loss_gen = 0.5 * d_fake[0][-1].mean() + 0.5 * d_fake[1][-1].mean()
loss_fm = sum([sum([l1loss(f, g) for f, g in zip(fs, rs)]) for fs, rs in zip(d_fake, d_real)]).mean()
f_fake = vgg(gen)
f_real = vgg(x)
# loss_p = 1.0 / 32 * l1loss(f_fake.relu1_2, f_real.relu1_2) + \
# 1.0 / 16 * l1loss(f_fake.relu2_2, f_real.relu2_2) + \
# 1.0 / 8 * l1loss(f_fake.relu3_3, f_real.relu3_3) + \
# 1.0 / 4 * l1loss(f_fake.relu4_3, f_real.relu4_3) + \
# l1loss(f_fake.relu5_3, f_real.relu5_3)
loss_p = 1.0 / 32 * l1loss(f_fake[0], f_real[0]) + \
1.0 / 16 * l1loss(f_fake[1], f_real[1]) + \
1.0 / 8 * l1loss(f_fake[2], f_real[2]) + \
1.0 / 4 * l1loss(f_fake[3], f_real[3]) + \
l1loss(f_fake[4], f_real[4])
loss_kl = -0.5 * torch.sum(1 + sigma - mu*mu - torch.exp(sigma))
loss = loss_gen + 10.0 * loss_fm + 10.0 * loss_p + 0.05 * loss_kl
loss.backward(retain_graph=True)
gen_opt.step()
dis_opt.zero_grad()
loss_dis = torch.mean(-torch.mean(torch.min(d_real[0][-1] - 1, torch.zeros_like(d_real[0][-1]))) +
-torch.mean(torch.min(-d_fake[0][-1] - 1, torch.zeros_like(d_fake[0][-1])))) + \
torch.mean(-torch.mean(torch.min(d_real[1][-1] - 1, torch.zeros_like(d_real[1][-1]))) +
-torch.mean(torch.min(-d_fake[1][-1] - 1, torch.zeros_like(d_fake[1][-1]))))
loss_dis.backward()
dis_opt.step()
e_g_loss.append(loss.item())
e_d_loss.append(loss_dis.item())
e_loss_p.append(loss_p.item())
e_loss_kl.append(loss_kl.item())
e_loss_fm.append(loss_fm.item())
#plt.imshow((gen.detach().cpu().numpy()[0]).transpose(1, 2, 0))
#plt.pause(.01)
#print(i, 'g_loss', e_g_loss[-1], 'd_loss', e_d_loss[-1])
os.makedirs(save_path / str(epoch), exist_ok=True)
Image.fromarray((gen.detach().cpu().numpy()[0].transpose(1, 2, 0) * 255.0).astype(np.uint8)).save(save_path / str(epoch) / f'{i}.png')
print('g_loss', np.mean(e_g_loss), 'p_loss', np.mean(e_loss_p),
'kl_loss', np.mean(e_loss_kl), 'fm_loss', np.mean(e_loss_fm), 'd_loss', np.mean(e_d_loss))
# save
cp = {}
for param in params:
cp[param] = eval(param).state_dict()
torch.save(cp, save_path / 'latest.pth')#{param:eval(param).state_dict() for param in params})
if __name__ == '__main__':
train()