|
| 1 | +import random |
| 2 | +import numpy as np |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +from scipy.interpolate import griddata |
| 5 | + |
| 6 | +#print test_data.shape |
| 7 | +#juno_data = np.loadtxt('Juno_field.txt').T |
| 8 | +#field_mag = np.absolute(juno_data) |
| 9 | + |
| 10 | +# grid for juno field |
| 11 | +juno_data = np.loadtxt('Juno_field.txt').T |
| 12 | +field_mag = np.absolute(juno_data) |
| 13 | +pphi, ttheta = np.mgrid[0:2.*np.pi:1024*1j, 0:np.pi:512*1j] |
| 14 | +pphi = pphi.flatten(); ttheta = ttheta.flatten() |
| 15 | + |
| 16 | + |
| 17 | +def chose_grid(grid,minB,maxB): |
| 18 | + if grid==250: |
| 19 | + data = np.loadtxt('mathematica_1.5k_to_0.25k/0.25k.dat') |
| 20 | + elif grid==500: |
| 21 | + data = np.loadtxt('mathematica_1.5k_to_0.25k/0.5k.dat') |
| 22 | + elif grid==750: |
| 23 | + data = np.loadtxt('mathematica_1.5k_to_0.25k/0.75k.dat') |
| 24 | + elif grid==1000: |
| 25 | + data = np.loadtxt('mathematica_1.5k_to_0.25k/1k.dat') |
| 26 | + elif grid==1250: |
| 27 | + data = np.loadtxt('mathematica_1.5k_to_0.25k/1.25k.dat') |
| 28 | + elif grid==1500: |
| 29 | + data = np.loadtxt('mathematica_1.5k_to_0.25k/1.5k.dat') |
| 30 | + x = data[:,0] |
| 31 | + y = data[:,1] |
| 32 | + z = data[:,2] |
| 33 | + |
| 34 | + #convert to lat, lon |
| 35 | + r = np.sqrt(x**2 + y**2 + z**2) |
| 36 | + ttheta1 = np.arccos(z/r) |
| 37 | + pphi1 = np.arctan2(y,x)+np.pi |
| 38 | + #pphi1, ttheta1 = np.meshgrid(phi1,theta1) |
| 39 | + #print phi1.min(), phi1.max(), theta1.min(), theta1.max() |
| 40 | + |
| 41 | + interp_data = griddata((pphi, ttheta), field_mag.flatten(), (pphi1, ttheta1), method='nearest') |
| 42 | + print interp_data.shape |
| 43 | + #plt.hist(interp_data) |
| 44 | + #plt.show() |
| 45 | + |
| 46 | + #new x,y,z with smaller radius |
| 47 | + x = 1.6*np.sin(ttheta1)*np.cos(pphi1) |
| 48 | + y = 1.6*np.sin(ttheta1)*np.sin(pphi1) |
| 49 | + z = 1.6*np.cos(ttheta1) |
| 50 | + |
| 51 | + trunc_x = x[np.where( ((minB < interp_data) & (interp_data < maxB)) )] |
| 52 | + trunc_y = y[np.where( ((minB < interp_data) & (interp_data < maxB)) )] |
| 53 | + trunc_z = z[np.where( ((minB < interp_data) & (interp_data < maxB)) )] |
| 54 | + |
| 55 | + return trunc_x,trunc_y,trunc_z |
| 56 | + |
| 57 | +#------------------------ |
| 58 | +f=open("seeds.csv","w+") |
| 59 | +f.write('x coord, y coord, z coord\n') |
| 60 | + |
| 61 | +x1,y1,z1 = chose_grid(1500,50,65) |
| 62 | + |
| 63 | +for i in range(len(x1)): |
| 64 | + to_write = "%f, %f, %f" %(x1[i], y1[i], z1[i]) |
| 65 | + f.write(to_write+'\n') |
| 66 | + |
| 67 | +x1,y1,z1 = chose_grid(1250,40,50) |
| 68 | +for i in range(len(x1)): |
| 69 | + to_write = "%f, %f, %f" %(x1[i], y1[i], z1[i]) |
| 70 | + f.write(to_write+'\n') |
| 71 | + |
| 72 | +x1,y1,z1 = chose_grid(1000,30,40) |
| 73 | +for i in range(len(x1)): |
| 74 | + to_write = "%f, %f, %f" %(x1[i], y1[i], z1[i]) |
| 75 | + f.write(to_write+'\n') |
| 76 | + |
| 77 | +x1,y1,z1 = chose_grid(750,20,30) |
| 78 | +for i in range(len(x1)): |
| 79 | + to_write = "%f, %f, %f" %(x1[i], y1[i], z1[i]) |
| 80 | + f.write(to_write+'\n') |
| 81 | + |
| 82 | +x1,y1,z1 = chose_grid(500,10,20) |
| 83 | +for i in range(len(x1)): |
| 84 | + to_write = "%f, %f, %f" %(x1[i], y1[i], z1[i]) |
| 85 | + f.write(to_write+'\n') |
| 86 | + |
| 87 | +x1,y1,z1 = chose_grid(250,0,10) |
| 88 | +for i in range(len(x1)): |
| 89 | + to_write = "%f, %f, %f" %(x1[i], y1[i], z1[i]) |
| 90 | + f.write(to_write+'\n') |
| 91 | + |
| 92 | +f.close() |
0 commit comments