|
| 1 | +# Pytorch |
| 2 | +import sys |
| 3 | +import torch |
| 4 | + |
| 5 | +print(torch.__version__) |
| 6 | +from torch import nn |
| 7 | +import os |
| 8 | +from torch.utils.data import DataLoader |
| 9 | +from torchvision import datasets |
| 10 | +from custom_image_dataset import CustomImageDataset |
| 11 | +import argparse |
| 12 | +from Image_preprocess import * |
| 13 | + |
| 14 | +device = ( |
| 15 | + "cuda" |
| 16 | + if torch.cuda.is_available() |
| 17 | + else "mps" if torch.backends.mps.is_available() else "cpu" |
| 18 | +) |
| 19 | +print(f"Using {device} device") |
| 20 | + |
| 21 | + |
| 22 | +class NerualNetwork(nn.Module): |
| 23 | + def __init__(self): |
| 24 | + super().__init__() |
| 25 | + self.flatten = nn.Flatten() |
| 26 | + self.linear_relu_stack = nn.Sequential( |
| 27 | + nn.Linear(224 * 224, 512), |
| 28 | + nn.RuLU(), |
| 29 | + nn.Linear(512, 512), |
| 30 | + nn.RuLU(), |
| 31 | + nn.Linear(512, 2), |
| 32 | + ) |
| 33 | + |
| 34 | + def forward(self, x): |
| 35 | + x = self.flatten(x) |
| 36 | + logits = self.linear_relu_stack(x) |
| 37 | + return logits |
| 38 | + |
| 39 | + |
| 40 | +def main(argv): |
| 41 | + |
| 42 | + parser = argparse.ArgumentParser( |
| 43 | + description="Fall detection with Vision Transformer(ViT) Model", |
| 44 | + formatter_class=argparse.ArgumentDefaultsHelpFormatter, |
| 45 | + ) |
| 46 | + parser.add_argument( |
| 47 | + "-l", |
| 48 | + "--load", |
| 49 | + nargs="+", |
| 50 | + type=str, |
| 51 | + help="python vit_model.py --load train_captions.csv", |
| 52 | + ) |
| 53 | + args = parser.parse_args() |
| 54 | + |
| 55 | + ## data load & argumentation |
| 56 | + if args.load is not None: |
| 57 | + file_path = "C:/Users/Jaeho/OneDrive/바탕 화면/fall detection/dataset/" |
| 58 | + data_csv = args.load[0] |
| 59 | + print("Loading file...") |
| 60 | + transform = image_transform() |
| 61 | + train_dataset = CustomImageDataset( |
| 62 | + csv_file=data_csv, img_dir=file_path, transform=transform |
| 63 | + ) |
| 64 | + # test_dataset = CustomImageDataset(data_csv, file_path, transform) |
| 65 | + train_dataloader = torch.utils.data.DataLoader( |
| 66 | + train_dataset, batch_size=1024, shuffle=True, num_workers=4 |
| 67 | + ) |
| 68 | + # test_dataloader = torch.utils.data.DataLoader(test_dataset, |
| 69 | + # batch_size=1024, |
| 70 | + # shuffle=True, |
| 71 | + # num_workers=4) |
| 72 | + |
| 73 | + visualize_data(train_dataloader) |
| 74 | + |
| 75 | + |
| 76 | +if __name__ == "__main__": |
| 77 | + main(sys.argv[1:]) |
0 commit comments