-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnode.py
59 lines (47 loc) · 2.11 KB
/
node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from federated import setup
import logging
from train import train
from validation import valid
import click
import copy
class Node():
def __init__(self,idx,saver,private_dataset_loader,args,node_z_c, share_classifier, share_buffer):
self.idx = idx
self.saver = saver
self.share_classifier = share_classifier
self.share_buffer = share_buffer
self.private_dataset_loader = private_dataset_loader
_, model, buffer = setup(args, node_z_c)
self.buffer = buffer
self.model = model
self.args = args
self.logger = logging.getLogger(__name__)
self.train_epochs_counter = 0
#input received from other node
self.in_buffer = None
self.in_model = None
def receive_data(self, model, buffer):
self.in_buffer = buffer
self.in_model = model
def send_data(self):
if self.share_classifier and self.share_buffer:
return copy.deepcopy(self.model), copy.deepcopy(self.buffer)
elif self.share_classifier and not self.share_buffer:
return copy.deepcopy(self.model), None
elif not self.share_classifier and self.share_buffer:
return None, copy.deepcopy(self.buffer)
else:
return None, None
def reset(self):
if self.share_classifier:
self.model = self.in_model
self.in_model = None
def train(self, num_epochs):
click.echo(f'Fed. Training - Node {self.idx}')
self.model = train(self.idx, self.args, self.logger, self.model, self.in_buffer,num_epochs, self.args.keys,self.saver,self.private_dataset_loader,self.train_epochs_counter)
self.train_epochs_counter += num_epochs
def test(self,test_loader,test_name,round):
test_accuracy_dict, test_loss_dict, test_roc_metrics_dict, probs, labels = valid(self.args,self.logger,self.model,self.saver,'Test',test_loader,test_name, round,self.args.keys,self.idx)
return test_accuracy_dict['accuracy_balanced'], probs, labels
def save_ckpt(self, round):
self.saver.save_model(self.model, f"node{self.idx}", round)