-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvllm_server.sh.test
executable file
·82 lines (73 loc) · 2.68 KB
/
vllm_server.sh.test
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
➜ ~ cat vllm2.sh
#!/bin/bash
set -euo pipefail
# Set CUDA allocator config to help avoid fragmentation.
export PYTORCH_CUDA_ALLOC_CONF="expandable_segments:True,max_split_size_mb:128"
# Global environment settings for low-latency, high-throughput inference
export TOKENIZERS_PARALLELISM=false
export OMP_NUM_THREADS=182 # Adjust based on your workload and NUMA topology
export KMP_BLOCKTIME=1
export KMP_AFFINITY=granularity=fine,compact,1,0
# Assume a single NUMA node (node 0). Adjust if your system has multiple NUMA nodes.
NUMA_NODE=0
###############################
# Model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
# Uses 2 GPUs (e.g., GPUs 4 and 5) on port 8000
###############################
echo "Launching deepseek-ai/DeepSeek-R1-Distill-Qwen-32B on port 8000..."
CUDA_VISIBLE_DEVICES=4,5 numactl --cpunodebind=${NUMA_NODE} --membind=${NUMA_NODE} \
vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B \
--port 8000 \
--tensor-parallel-size 2 \
--cpu-offload-gb 100 \
--swap-space 64 \
--gpu-memory-utilization 0.95 \
--compilation-config 3 \
--enable-prefix-caching \
--disable-log-requests \
--uvicorn-log-level error \
--block-size 32 \
> deepseek_qwen32B.log 2>&1 &
###############################
# Model: mkurman/Qwen2.5-14B-DeepSeek-R1-1M
# Uses 1 GPU (e.g., GPU 7) on port 8001
###############################
###############################
# Model: Qwen/Qwen2.5-VL-72B-Instruct
# Uses 4 GPUs (e.g., GPUs 0,1,2,3) on port 8002
###############################
echo "Launching Qwen/Qwen2.5-VL-72B-Instruct on port 8002..."
CUDA_VISIBLE_DEVICES=0,1,2,3 numactl --cpunodebind=${NUMA_NODE} --membind=${NUMA_NODE} \
vllm serve Qwen/Qwen2.5-VL-72B-Instruct \
--port 8001 \
--tensor-parallel-size 4 \
--cpu-offload-gb 100 \
--swap-space 64 \
--gpu-memory-utilization 0.95 \
--compilation-config 3 \
--enable-prefix-caching \
--disable-log-requests \
--uvi/Users/lina/Downloads/svmai.svgcorn-log-level error \
--block-size 32 \
> qwen72B_instruct.log 2>&1 &
###############################
# Model: v2ray/GPT4chan-24B
# Uses 1 GPU (e.g., GPU 6) on port 8003
###############################
echo "Launching v2ray/GPT4chan-24B on port 8003..."
CUDA_VISIBLE_DEVICES=6 numactl --cpunodebind=${NUMA_NODE} --membind=${NUMA_NODE} \
vllm serve v2ray/GPT4chan-24B \
--port 8002 \
--tensor-parallel-size 1 \
--cpu-offload-gb 64 \
--swap-space 64 \
--gpu-memory-utilization 0.95 \
--compilation-config 3 \
--enable-prefix-caching \
--disable-log-requests \
--uvicorn-log-level error \
--block-size 32 \
> gpt4chan24B.log 2>&1 &
echo "All model servers launched. Process IDs:"
jobs -p
➜ ~