|
| 1 | +import random |
| 2 | +import numpy as np |
| 3 | + |
| 4 | + |
| 5 | +def read_puzzle(in_line): |
| 6 | + """ |
| 7 | + reads a sudoku puzzle from a single input line |
| 8 | + :param in_line: 9 space-separated 9-digit numbers ranging from 0-9 |
| 9 | + :return: returns the numbers in a numpy array |
| 10 | + """ |
| 11 | + arr = np.zeros((9,9), dtype=int) |
| 12 | + for i, line in enumerate(in_line.split(' ')): |
| 13 | + for j, num in enumerate(list(line)): |
| 14 | + arr[i, j] = num |
| 15 | + |
| 16 | + return arr |
| 17 | + |
| 18 | + |
| 19 | +def test_fit(x, y, n, board_state): |
| 20 | + """ |
| 21 | + tests whether n can be placed in x,y on the current board_state |
| 22 | + :param x: horizontal position on the board |
| 23 | + :param y: vertical position on the board |
| 24 | + :param n: the number to place |
| 25 | + :param board_state: the current board state as a numpy array |
| 26 | + :return: true if nothing would stop n from being placed in x,y on board_state, else returns false |
| 27 | + """ |
| 28 | + |
| 29 | + # first test if something is already in that position |
| 30 | + if board_state[x, y] != 0: |
| 31 | + return False |
| 32 | + |
| 33 | + # then test if n already exists in that column or row |
| 34 | + for i in range(9): |
| 35 | + if board_state[x, i] == n: |
| 36 | + return False |
| 37 | + elif board_state[i, y] == n: |
| 38 | + return False |
| 39 | + |
| 40 | + # finally test if it fits in the block |
| 41 | + x_block = 0 |
| 42 | + y_block = 0 |
| 43 | + |
| 44 | + if x < 3: |
| 45 | + x_block = 0 |
| 46 | + elif x < 6: |
| 47 | + x_block = 1 |
| 48 | + else: |
| 49 | + x_block = 2 |
| 50 | + |
| 51 | + if y < 3: |
| 52 | + y_block = 0 |
| 53 | + elif y < 6: |
| 54 | + y_block = 1 |
| 55 | + else: |
| 56 | + y_block = 2 |
| 57 | + |
| 58 | + for i in range(x_block * 3, x_block * 3 + 3): |
| 59 | + for j in range(y_block * 3, y_block * 3 + 3): |
| 60 | + if board_state[i, j] == n: |
| 61 | + return False |
| 62 | + |
| 63 | + return True |
| 64 | + |
| 65 | + |
| 66 | +def generate_puzzle(difficulty='easy'): |
| 67 | + """ |
| 68 | + creates a sudoku puzzle |
| 69 | + :param difficulty: easy, medium, hard, impossible accepted |
| 70 | + :return: a 9x9 numpy array of valid sudoku |
| 71 | + """ |
| 72 | + |
| 73 | + num_clues = 0 |
| 74 | + |
| 75 | + # define a random-ish amount of clues based on the difficulty |
| 76 | + if difficulty == 'easy': |
| 77 | + for i in range(9): |
| 78 | + num_clues += random.randint(3,5) |
| 79 | + elif difficulty == 'medium': |
| 80 | + for i in range(9): |
| 81 | + num_clues += random.randint(2,4) |
| 82 | + elif difficulty == 'hard': |
| 83 | + for i in range(9): |
| 84 | + num_clues += random.randint(1,3) |
| 85 | + elif difficulty == 'impossible': |
| 86 | + for i in range(9): |
| 87 | + num_clues += random.randint(0,2) |
| 88 | + |
| 89 | + # create the playboard, or puzzle |
| 90 | + playboard = np.zeros((9,9), dtype=int) |
| 91 | + |
| 92 | + # always make sure a number can be placed on the board |
| 93 | + while num_clues > 0: |
| 94 | + x = random.randint(0, 8) |
| 95 | + y = random.randint(0, 8) |
| 96 | + n = random.randint(1, 9) |
| 97 | + |
| 98 | + if test_fit(x, y, n, playboard): |
| 99 | + playboard[x, y] = n |
| 100 | + num_clues -= 1 |
| 101 | + |
| 102 | + return playboard |
| 103 | + |
| 104 | + |
| 105 | +def narrow_solutions(x, y, board_state): |
| 106 | + """ |
| 107 | + tests all numbers 1-9 whether they could fit in spot x,y on the current board |
| 108 | + :param x: horizontal position |
| 109 | + :param y: vertical position |
| 110 | + :param board_state: current board as a 9x9 valid sudoku puzzle |
| 111 | + :return: returns a numpy array of bools indicating whether that index(+1) would fit in x,y |
| 112 | + """ |
| 113 | + solutions = np.array([True, True, True, True, True, True, True, True, True]) |
| 114 | + |
| 115 | + for i in range(1, 10): # numbers from 1 to 9 |
| 116 | + # test for vertical and horizontal |
| 117 | + for j in range(9): |
| 118 | + if board_state[x, j] == i: |
| 119 | + solutions[i - 1] = False |
| 120 | + break |
| 121 | + elif board_state[j, y] == i: |
| 122 | + solutions[i - 1] = False |
| 123 | + break |
| 124 | + |
| 125 | + # finally test if it exists in the block |
| 126 | + x_block = 0 |
| 127 | + y_block = 0 |
| 128 | + |
| 129 | + if x < 3: |
| 130 | + x_block = 0 |
| 131 | + elif x < 6: |
| 132 | + x_block = 1 |
| 133 | + else: |
| 134 | + x_block = 2 |
| 135 | + |
| 136 | + if y < 3: |
| 137 | + y_block = 0 |
| 138 | + elif y < 6: |
| 139 | + y_block = 1 |
| 140 | + else: |
| 141 | + y_block = 2 |
| 142 | + |
| 143 | + for j in range(x_block * 3, x_block * 3 + 3): |
| 144 | + for k in range(y_block * 3, y_block * 3 + 3): |
| 145 | + if board_state[j, k] == i: |
| 146 | + solutions[i - 1] = False |
| 147 | + |
| 148 | + return solutions |
| 149 | + |
| 150 | + |
| 151 | +def catch_error(list_like): |
| 152 | + """ |
| 153 | + if none of the options are true, something has gone wrong |
| 154 | + :param list_like: a list_like of bools |
| 155 | + :return: true if at least one is true, else returns false |
| 156 | + """ |
| 157 | + for b in list_like: |
| 158 | + if b: |
| 159 | + return True |
| 160 | + |
| 161 | + return False |
| 162 | + |
| 163 | + |
| 164 | +def single_option(list_like): |
| 165 | + """ |
| 166 | + checks if a single option is true |
| 167 | + :param list_like: a list-like of bools |
| 168 | + :return: true if exactly 1 is true, else returns false |
| 169 | + """ |
| 170 | + trues = 0 |
| 171 | + num = 0 |
| 172 | + for i, b in enumerate(list_like): |
| 173 | + if b: |
| 174 | + trues += 1 |
| 175 | + num = i + 1 |
| 176 | + if trues > 1: |
| 177 | + return 0 |
| 178 | + return num |
| 179 | + |
| 180 | + |
| 181 | +def iterate_through_block(n, x, y, state, solution_state): |
| 182 | + """ |
| 183 | + goes through a 3x3 block to check for n |
| 184 | + :param n: |
| 185 | + :param x: |
| 186 | + :param y: |
| 187 | + :param state: |
| 188 | + :param solution_state: |
| 189 | + :return: |
| 190 | + """ |
| 191 | + num_n = 0 |
| 192 | + pos = (0, 0) |
| 193 | + |
| 194 | + # go though each position in the block looking for n |
| 195 | + for i in range(x * 3, x * 3 + 3): |
| 196 | + for j in range(y * 3, y * 3 + 3): |
| 197 | + if state[i, j] == n + 1: |
| 198 | + return 0, (0, 0) # break all the way out of the block because the number already exists here |
| 199 | + |
| 200 | + if state[i, j] != 0: # make sure nothing is here already |
| 201 | + continue |
| 202 | + |
| 203 | + # this position is valid, check if it can be n |
| 204 | + if solution_state[i, j, n]: |
| 205 | + num_n += 1 |
| 206 | + pos = (i, j) |
| 207 | + |
| 208 | + return num_n, pos |
| 209 | + |
| 210 | + |
| 211 | +def check_area(current_state, current_solution_state): |
| 212 | + # first check for rows where only one box can have a number (n) |
| 213 | + for n in range(9): # current number we are working with (to access in current_solution_state) |
| 214 | + for i in range(9): # current row we are in |
| 215 | + num_n = 0 |
| 216 | + pos = (0, 0) |
| 217 | + for j in range(9): # current index in the row |
| 218 | + if current_state[i, j] == n + 1: |
| 219 | + break # break all the way out of the row because the number already exists here |
| 220 | + |
| 221 | + if current_state[i, j] != 0: # make sure nothing is here already |
| 222 | + continue |
| 223 | + |
| 224 | + # this position is valid, check if it can be n |
| 225 | + if current_solution_state[i, j, n]: |
| 226 | + num_n += 1 |
| 227 | + pos = (i, j) |
| 228 | + |
| 229 | + # now we are done with that row, so check if there was one single solution |
| 230 | + if num_n == 1: |
| 231 | + current_state[pos[0], pos[1]] = n + 1 # if one solution existed, the state is updated and we return |
| 232 | + return current_state |
| 233 | + |
| 234 | + # then do the same with columns |
| 235 | + for n in range(9): # current number we are working with (to access in current_solution_state) |
| 236 | + for i in range(9): # current column we are in |
| 237 | + num_n = 0 |
| 238 | + pos = (0, 0) |
| 239 | + for j in range(9): # current index in the row |
| 240 | + if current_state[j, i] == n + 1: |
| 241 | + break # break all the way out of the row because the number already exists here |
| 242 | + |
| 243 | + if current_state[j, i] != 0: # make sure nothing is here already |
| 244 | + continue |
| 245 | + |
| 246 | + # this position is valid, check if it can be n |
| 247 | + if current_solution_state[j, i, n]: |
| 248 | + num_n += 1 |
| 249 | + pos = (j, i) |
| 250 | + |
| 251 | + # now we are done with that row, so check if there was one single solution |
| 252 | + if num_n == 1: |
| 253 | + current_state[pos[0], pos[1]] = n + 1 # if one solution existed, the state is updated and we return |
| 254 | + return current_state |
| 255 | + |
| 256 | + # finally, check the blocks |
| 257 | + # this can be done by just iterating through them |
| 258 | + for n in range(9): # the number we are looking for |
| 259 | + for x in range(3): # the horizontal block from 0 to 2 |
| 260 | + for y in range(3): # the vertical block from 0 to 2 |
| 261 | + num_n, pos = iterate_through_block(n, x, y, current_state, current_solution_state) |
| 262 | + if num_n == 1: # there was exactly one square that could be n |
| 263 | + current_state[pos[0], pos[1]] = n + 1 |
| 264 | + return current_state |
| 265 | + |
| 266 | + return current_state # that was a fluke (but it should have worked) |
| 267 | + |
| 268 | + |
| 269 | +def sudoku_is_complete(state): |
| 270 | + for i in range(9): |
| 271 | + for j in range(9): |
| 272 | + if(state[i,j] == 0): |
| 273 | + return False |
| 274 | + |
| 275 | + return True |
| 276 | + |
| 277 | + |
| 278 | +def solver(puzzle_input): |
| 279 | + puzzle_is_solved = False |
| 280 | + |
| 281 | + # create a board of possible solutions of each unsolved square |
| 282 | + solutions_board = np.zeros((9,9,9)) |
| 283 | + for i in range(9): |
| 284 | + for j in range(9): |
| 285 | + if puzzle_input[i, j] == 0: |
| 286 | + solutions_board[i, j] = np.array([True, True, True, True, True, True, True, True, True]) |
| 287 | + |
| 288 | + num_iterations = 0 |
| 289 | + # iterate through these until the puzzle is solved |
| 290 | + while not puzzle_is_solved: |
| 291 | + did_something = False |
| 292 | + |
| 293 | + for i in range(9): |
| 294 | + for j in range(9): |
| 295 | + if puzzle_input[i, j] != 0: |
| 296 | + continue |
| 297 | + # first, narrow down options in that spot based on row, column and block |
| 298 | + solutions_board[i, j] = narrow_solutions(i, j, puzzle_input) |
| 299 | + |
| 300 | + # check for errors first |
| 301 | + if not catch_error(solutions_board[i, j]): |
| 302 | + print("There was an unsolvable error at", i, j) |
| 303 | + puzzle_input[i, j] = 69 |
| 304 | + return puzzle_input |
| 305 | + |
| 306 | + # now check if this position only has one option |
| 307 | + single_solution = single_option(solutions_board[i, j]) |
| 308 | + if single_solution > 0: |
| 309 | + puzzle_input[i, j] = single_solution |
| 310 | + did_something = True |
| 311 | + |
| 312 | + if not did_something: # only check areas if nothing happened last iteration since it is unnecessary, |
| 313 | + # resource intensive, and might break something by using outdated possibilities |
| 314 | + puzzle_input = check_area(puzzle, solutions_board) |
| 315 | + |
| 316 | + num_iterations += 1 |
| 317 | + |
| 318 | + if sudoku_is_complete(puzzle_input): |
| 319 | + print("Sudoku complete") |
| 320 | + break |
| 321 | + |
| 322 | + if num_iterations > 1000: |
| 323 | + print("Something might be wrong here, aborting") |
| 324 | + return puzzle_input |
| 325 | + |
| 326 | + return puzzle_input |
| 327 | + |
| 328 | + |
| 329 | +# puzzle = generate_puzzle() |
| 330 | + |
| 331 | +puzzle = read_puzzle(input("Please input a string equating a sudoku board: " |
| 332 | + "\n9 space-separated 9-long series of numbers from 0-9 where 0 indicates empty" |
| 333 | + "\n")) |
| 334 | + |
| 335 | +print(puzzle) |
| 336 | + |
| 337 | +solved = solver(puzzle) |
| 338 | +print(solved) |
0 commit comments