@@ -4,7 +4,7 @@ require(tibble)
4
4
5
5
# # -- For two variables: ------------------------------------
6
6
7
- AICc.table.2var <- function (sig.vars , control.var.char = NULL , c.var = 0 , matrix.char , perm = 999 , type = " AICc" , method = " bray" ) {
7
+ AICc.table.2var <- function (sig.vars , control.var.char = NULL , c.var = 0 , matrix.char , perm , type = " AICc" , method = " bray" ) {
8
8
9
9
varcomb.2.AICc <- tibble(variables = rep(" var.name" , choose(length(sig.vars ),2 )),
10
10
AICc.values = rep(0 ),
@@ -13,7 +13,7 @@ AICc.table.2var <- function(sig.vars, control.var.char = NULL, c.var = 0, matrix
13
13
`Var Explnd` = rep(0 ),
14
14
Model = rep(" model" ))
15
15
16
- if (is.character(control.var.char ) == TRUE & c.var == 0 ) {c.var = 1 }
16
+ if (is.character(control.var.char ) == TRUE & c.var == 0 ) {c.var = length( control.var.char ) }
17
17
18
18
combo.list <- combn(x = sig.vars , m = 2 , simplify = FALSE )
19
19
@@ -52,11 +52,12 @@ AICc.table.2var <- function(sig.vars, control.var.char = NULL, c.var = 0, matrix
52
52
53
53
varcomb.2.AICc $ `Delta AICc` <- varcomb.2.AICc $ AICc.values -
54
54
min(varcomb.2.AICc $ AICc.values )
55
- varcomb.2.AICc $ `Relative Likelihood` <- exp((min( varcomb.2.AICc $ AICc.values ) -
56
- varcomb.2.AICc $ AICc.values )/ 2 )
55
+ varcomb.2.AICc $ `Relative Likelihood` <-
56
+ exp( - .5 * ( varcomb.2.AICc $ AICc.values - min( varcomb.2.AICc $ AICc.values )) )
57
57
58
58
# Relative likelihood compared with best model; see
59
59
# https://en.wikipedia.org/wiki/Likelihood_function
60
+ # https://www.rdocumentation.org/packages/qpcR/versions/1.4-1/topics/akaike.weights
60
61
61
62
62
63
return (varcomb.2.AICc )
@@ -68,7 +69,7 @@ return(varcomb.2.AICc)
68
69
# # -- For N variables: ---------------------------------------------------
69
70
70
71
71
- AICc.table.Nvar <- function (sig.vars , control.var.char = NULL , c.var = 0 , matrix.char , perm = 999 , n.var = 1 , composite = FALSE , type = " AICc" , method = " bray" ) {
72
+ AICc.table.Nvar <- function (sig.vars , control.var.char = NULL , c.var = 0 , matrix.char , perm , n.var = 1 , composite = FALSE , type = " AICc" , method = " bray" ) {
72
73
73
74
if (n.var > length(sig.vars )) { stop(" n.var greater than number of significant variables" )}
74
75
@@ -123,8 +124,8 @@ AICc.table.Nvar <- function(sig.vars, control.var.char = NULL, c.var = 0, matrix
123
124
if (composite == FALSE ) {
124
125
varcomb.N.AICc $ `Delta AICc` <- varcomb.N.AICc $ AICc.values -
125
126
min(varcomb.N.AICc $ AICc.values )
126
- varcomb.N .AICc $ `Relative Likelihood` <- exp((min( varcomb.N.AICc $ AICc.values ) -
127
- varcomb.N .AICc $ AICc.values )/ 2 )
127
+ varcomb.2 .AICc $ `Relative Likelihood` <-
128
+ exp( - .5 * ( varcomb.2.AICc $ AICc.values - min( varcomb.2 .AICc $ AICc.values )) )
128
129
}
129
130
130
131
@@ -149,7 +150,7 @@ AICc.table.all <- function(sig.vars, control.var.char = NULL, matrix.char, perm
149
150
150
151
temp <- AICc.table.Nvar(sig.vars = control.var.char , control.var.char = NULL ,
151
152
matrix.char = matrix.char , n.var = 1 , composite = TRUE ,
152
- type = type , method = method )
153
+ type = type , method = method , perm = perm )
153
154
154
155
varcomb.all <- rbind(varcomb.all , temp )
155
156
@@ -161,7 +162,7 @@ AICc.table.all <- function(sig.vars, control.var.char = NULL, matrix.char, perm
161
162
162
163
temp <- AICc.table.Nvar(sig.vars = sig.vars , control.var.char = control.var.char ,
163
164
matrix.char = matrix.char , n.var = i , composite = TRUE ,
164
- type = type , method = method )
165
+ type = type , method = method , perm = perm )
165
166
166
167
varcomb.all <- rbind(varcomb.all , temp )
167
168
0 commit comments