|
| 1 | +# likertTable for all three functions should be formatted with question columns |
| 2 | +# and demographic (or grouping) columns, each row should be a different |
| 3 | +# respondents answer. Cells should be e.g. likert responses (More, etc.) or |
| 4 | +# demographic data (e.g. age groups) |
| 5 | + |
| 6 | +## Results table for the addKruskal and addChiSquared functions should be formulated like this: |
| 7 | + |
| 8 | +# |
| 9 | +# activityGardensResults <- |
| 10 | +# tibble( |
| 11 | +# demographicVariable = c( |
| 12 | +# "Gender", |
| 13 | +# "Marital Status", |
| 14 | +# "Age", |
| 15 | +# "Housing", |
| 16 | +# "Town Type", |
| 17 | +# "Governorate", |
| 18 | +# "Employment", |
| 19 | +# "Work Location", |
| 20 | +# "Education", |
| 21 | +# "Before Income", |
| 22 | +# "After Income" |
| 23 | +# ), |
| 24 | +# afterGardensRelaxing_CHI = rep(0.0, length(demographicVariable)), |
| 25 | +# afterGardensRelaxing_PVAL = rep(0.0, length(demographicVariable)), |
| 26 | +# afterGardensRelaxing_CORPVAL = rep(0.0, length(demographicVariable)), |
| 27 | +# afterGardensExercise_CHI = rep(0.0, length(demographicVariable)), |
| 28 | +# afterGardensExercise_PVAL = rep(0.0, length(demographicVariable)), |
| 29 | +# afterGardensExercise_CORPVAL = rep(0.0, length(demographicVariable)), |
| 30 | +# afterGardensBirdPhotography_CHI = rep(0.0, length(demographicVariable)), |
| 31 | +# afterGardensBirdPhotography_PVAL = rep(0.0, length(demographicVariable)), |
| 32 | +# afterGardensBirdPhotography_CORPVAL = rep(0.0, length(demographicVariable)) |
| 33 | +# |
| 34 | +# ) |
| 35 | + |
| 36 | + |
| 37 | + |
| 38 | +addKruskal <- |
| 39 | + function(likertTable, |
| 40 | + resultsTable, |
| 41 | + questionColumns, |
| 42 | + demographicColumns) { |
| 43 | + i = min(demographicColumns) # row |
| 44 | + j = min(questionColumns) # column |
| 45 | + |
| 46 | + a = 1 # the first row in the resultsTable that should have results assigned. |
| 47 | + c = 4 # first column that should have corrected pvalues |
| 48 | + |
| 49 | + # Iterate through each demographic variable |
| 50 | + for (i in min(demographicColumns):max(demographicColumns)) { |
| 51 | + b = 2 # the first column in the resultsTable that should have results assigned to it |
| 52 | + |
| 53 | + for (j in min(questionColumns):max(questionColumns)) { |
| 54 | + # Create a temp table and filter out blanks. |
| 55 | + tempTable <- likertTable[, c(j, i)] |
| 56 | + tempTable <- tempTable[tempTable[2] != "",] |
| 57 | + |
| 58 | + # perform the kruskal wallis test |
| 59 | + tempKruskal <- kruskal.test(tempTable[, 1] ~ tempTable[, 2]) |
| 60 | + |
| 61 | + # add statistic value and pvalue to the table. |
| 62 | + resultsTable[a, b] <- tempKruskal$statistic |
| 63 | + resultsTable[a, b + 1] <- tempKruskal$p.value |
| 64 | + |
| 65 | + # add 2 so next results go in the proper place |
| 66 | + b = b + 3 |
| 67 | + } # end question loop |
| 68 | + |
| 69 | + a = a + 1 # go to next row for next set of demographic info |
| 70 | + |
| 71 | + } # end demographic loop |
| 72 | + |
| 73 | + # add corrected pvalue |
| 74 | + |
| 75 | + z = 1 |
| 76 | + for (z in 1:length(questionColumns)) { |
| 77 | + tempCorrected <- |
| 78 | + p.adjust(as.vector(unlist(resultsTable[, c - 1])), method = "holm") |
| 79 | + |
| 80 | + resultsTable[, c] <- tempCorrected |
| 81 | + |
| 82 | + c = c + 3 |
| 83 | + |
| 84 | + } # end addition of corrected pvalues |
| 85 | + |
| 86 | + return(resultsTable) |
| 87 | + |
| 88 | + } # end function |
| 89 | + |
| 90 | + |
| 91 | + |
| 92 | +addChiSquared <- |
| 93 | + function(likertTable, |
| 94 | + resultsTable, |
| 95 | + questionColumns, |
| 96 | + demographicColumns, |
| 97 | + minVal = 25) { |
| 98 | + i = min(demographicColumns) # row |
| 99 | + j = min(questionColumns) # column |
| 100 | + |
| 101 | + a = 1 # the first row in the resultsTable that should have results assigned. |
| 102 | + c = 4 # first column that should have corrected pvalues |
| 103 | + |
| 104 | + # Iterate through each demographic variable |
| 105 | + for (i in min(demographicColumns):max(demographicColumns)) { |
| 106 | + b = 2 # the first column in the resultsTable that should have results assigned to it |
| 107 | + |
| 108 | + for (j in min(questionColumns):max(questionColumns)) { |
| 109 | + # Create a temp table and filter out blanks. |
| 110 | + tempTable <- likertTable[, c(j, i)] |
| 111 | + tempTable <- |
| 112 | + tempTable[tempTable[2] != "" & !is.na(tempTable[1]) ,] |
| 113 | + |
| 114 | + # Check to see if any group has less than min responses. |
| 115 | + testSize <- |
| 116 | + tempTable %>% count(tempTable[1:2]) %>% group_by(across(.cols = 2)) %>% summarise(n = sum(n)) |
| 117 | + |
| 118 | + tooSmall <- testSize[testSize[2] < minVal, 1] |
| 119 | + print(unlist(tooSmall)) |
| 120 | + # print(colnames(tempTable)) # use to debug |
| 121 | + |
| 122 | + # Based on this, either assign a "can't be tested"/NA indicator or the values for the chi-squared test. |
| 123 | + if (length(setdiff(unique(tempTable[, 2]), tooSmall)) < 2) { |
| 124 | + resultsTable[a, b] <- NA |
| 125 | + resultsTable[a, b + 1] <- NA |
| 126 | + |
| 127 | + } else { |
| 128 | + tempTable <- tempTable[!(tempTable[, 2] %in% tooSmall),] |
| 129 | + |
| 130 | + # perform the chi squared test |
| 131 | + tempChi <- chisq.test(tempTable[, 1], tempTable[, 2]) |
| 132 | + |
| 133 | + # add statistic value and pvalue to the table. |
| 134 | + resultsTable[a, b] <- tempChi$statistic |
| 135 | + resultsTable[a, b + 1] <- tempChi$p.value |
| 136 | + |
| 137 | + } # end of else |
| 138 | + |
| 139 | + # Use this if you want to export a Pivot table |
| 140 | + # pivot <- pivot_wider(testSize, |
| 141 | + # names_from = colnames(testSize[1]), |
| 142 | + # values_from = n) |
| 143 | + |
| 144 | + # Clean up |
| 145 | + remove(testSize, tooSmall) |
| 146 | + |
| 147 | + # add 2 so next results go in the proper place |
| 148 | + b = b + 3 |
| 149 | + } # end question loop |
| 150 | + |
| 151 | + a = a + 1 # go to next row for next set of demographic info |
| 152 | + |
| 153 | + } # end demographic loop |
| 154 | + |
| 155 | + # add corrected pvalue |
| 156 | + |
| 157 | + z = 1 |
| 158 | + for (z in 1:length(questionColumns)) { |
| 159 | + tempCorrected <- |
| 160 | + p.adjust(as.vector(unlist(resultsTable[, c - 1])), method = "holm") |
| 161 | + |
| 162 | + resultsTable[, c] <- tempCorrected |
| 163 | + |
| 164 | + c = c + 3 |
| 165 | + |
| 166 | + } # end addition of corrected pvalues |
| 167 | + |
| 168 | + return(resultsTable) |
| 169 | + |
| 170 | + } # end function |
| 171 | + |
| 172 | + |
| 173 | + |
| 174 | +# This function needs to compare between categories within a question to see |
| 175 | +# which categories are significantly different. |
| 176 | + |
| 177 | +posthocChiSquared <- |
| 178 | + function(likertTable, |
| 179 | + questionColumn, |
| 180 | + demographicColumn, |
| 181 | + minVal = 25, |
| 182 | + correction = TRUE) { |
| 183 | + tempTable <- likertTable[, c(questionColumn, demographicColumn)] |
| 184 | + tempTable <- |
| 185 | + tempTable[tempTable[2] != "" & !is.na(tempTable[1]) , ] |
| 186 | + |
| 187 | + # Check to see if any group has less than min allowed responses. |
| 188 | + testSize <- |
| 189 | + tempTable %>% count(tempTable[1:2]) %>% group_by(across(.cols = 2)) %>% summarise(n = sum(n)) |
| 190 | + |
| 191 | + tooSmall <- testSize[testSize[2] < minVal, 1] |
| 192 | + print(unlist(tooSmall)) |
| 193 | + |
| 194 | + # Filter out too small categories |
| 195 | + tempTable <- tempTable[!(tempTable[, 2] %in% tooSmall), ] |
| 196 | + # and make sure demographic is a factor (this gets lost sometimes) |
| 197 | + if (is.factor(tempTable[, 2]) == FALSE) { |
| 198 | + tempTable[, 2] <- as.factor(tempTable[, 2]) |
| 199 | + } |
| 200 | + |
| 201 | + # Make sure that the number of unique is more than two |
| 202 | + if (nlevels(tempTable[, 2]) < 3) { |
| 203 | + stop(print("Too few levels")) |
| 204 | + } |
| 205 | + |
| 206 | + numLevels <- nlevels(tempTable[, 2]) |
| 207 | + |
| 208 | + # create the results table |
| 209 | + #create matrix with correct number of columns |
| 210 | + resultsTable <- matrix(rep(999, times = numLevels ^ 2), |
| 211 | + ncol = numLevels, |
| 212 | + byrow = TRUE) |
| 213 | + |
| 214 | + #define column names and row names of matrix |
| 215 | + tempLevels <- levels(tempTable[, 2]) |
| 216 | + colnames(resultsTable) <- tempLevels |
| 217 | + rownames(resultsTable) <- tempLevels |
| 218 | + |
| 219 | + # for each [i,j] pair of factors add the pvalue for chisquared test |
| 220 | + i = 1 # row |
| 221 | + j = 1 # column |
| 222 | + for (i in 1:numLevels) { |
| 223 | + for (j in 1:numLevels) { |
| 224 | + if (i != j) { |
| 225 | + # subset for i and j levels |
| 226 | + testTable <- |
| 227 | + tempTable[tempTable[, 2] %in% tempLevels[c(i, j)] ,] |
| 228 | + |
| 229 | + # run test and assign pvalue to i,j spot |
| 230 | + resultsTable[i, j] <- |
| 231 | + chisq.test(testTable[, 1], testTable[, 2])$p.value |
| 232 | + |
| 233 | + } else { |
| 234 | + resultsTable[i, j] <- NA |
| 235 | + } |
| 236 | + |
| 237 | + } # end column loop |
| 238 | + |
| 239 | + } # end row loop |
| 240 | + |
| 241 | + # remove the lower triangle--can probably make this a filter but this is easy |
| 242 | + resultsTable[lower.tri(resultsTable, diag = FALSE)] <- NA |
| 243 | + |
| 244 | + # correct pvalues |
| 245 | + if (correction == TRUE) { |
| 246 | + resultsTable <- |
| 247 | + matrix( |
| 248 | + p.adjust(as.vector(resultsTable), method = 'holm'), |
| 249 | + ncol = numLevels, |
| 250 | + dimnames = list(tempLevels, tempLevels) |
| 251 | + ) |
| 252 | + } |
| 253 | + #convert matrix to a tibble |
| 254 | + resultsTable <- as_tibble(resultsTable, rownames = "levels") |
| 255 | + |
| 256 | + return(resultsTable) |
| 257 | + |
| 258 | + } # end function |
0 commit comments