|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import os\n", |
| 10 | + "import shutil\n", |
| 11 | + "from functools import partial\n", |
| 12 | + "from pathlib import Path\n", |
| 13 | + "import warnings\n", |
| 14 | + "\n", |
| 15 | + "import numpy as np\n", |
| 16 | + "import torch\n", |
| 17 | + "from box import ConfigBox\n", |
| 18 | + "from dvclive import Live\n", |
| 19 | + "from dvclive.fastai import DVCLiveCallback\n", |
| 20 | + "from fastai.data.all import Normalize, get_files\n", |
| 21 | + "from fastai.metrics import DiceMulti\n", |
| 22 | + "from fastai.vision.all import (Resize, SegmentationDataLoaders,\n", |
| 23 | + " imagenet_stats, models, unet_learner)\n", |
| 24 | + "from ruamel.yaml import YAML\n", |
| 25 | + "from PIL import Image\n", |
| 26 | + "\n", |
| 27 | + "os.chdir(\"..\")\n", |
| 28 | + "warnings.filterwarnings(\"ignore\")" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "attachments": {}, |
| 33 | + "cell_type": "markdown", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "### Load data and split it into train/test\n", |
| 37 | + "\n", |
| 38 | + "We have some [data in DVC](https://dvc.org/doc/start/data-management/data-versioning) that we can pull. \n", |
| 39 | + "\n", |
| 40 | + "This data includes:\n", |
| 41 | + "* satellite images\n", |
| 42 | + "* masks of the swimming pools in each satellite image\n", |
| 43 | + "\n", |
| 44 | + "DVC can help connect your data to your repo, but it isn't necessary to have your data in DVC to start tracking experiments with DVC and DVCLive." |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": null, |
| 50 | + "metadata": {}, |
| 51 | + "outputs": [], |
| 52 | + "source": [ |
| 53 | + "!dvc pull" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": null, |
| 59 | + "metadata": {}, |
| 60 | + "outputs": [], |
| 61 | + "source": [ |
| 62 | + "test_regions = [\"REGION_1-\"]\n", |
| 63 | + "\n", |
| 64 | + "img_fpaths = get_files(Path(\"data\") / \"pool_data\" / \"images\", extensions=\".jpg\")\n", |
| 65 | + "\n", |
| 66 | + "train_data_dir = Path(\"data\") / \"train_data\"\n", |
| 67 | + "train_data_dir.mkdir(exist_ok=True)\n", |
| 68 | + "test_data_dir = Path(\"data\") / \"test_data\"\n", |
| 69 | + "test_data_dir.mkdir(exist_ok=True)\n", |
| 70 | + "for img_path in img_fpaths:\n", |
| 71 | + " msk_path = Path(\"data\") / \"pool_data\" / \"masks\" / f\"{img_path.stem}.png\"\n", |
| 72 | + " if any(region in str(img_path) for region in test_regions):\n", |
| 73 | + " shutil.copy(img_path, test_data_dir)\n", |
| 74 | + " shutil.copy(msk_path, test_data_dir)\n", |
| 75 | + " else:\n", |
| 76 | + " shutil.copy(img_path, train_data_dir)\n", |
| 77 | + " shutil.copy(msk_path, train_data_dir)" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "attachments": {}, |
| 82 | + "cell_type": "markdown", |
| 83 | + "metadata": {}, |
| 84 | + "source": [ |
| 85 | + "### Create a data loader\n", |
| 86 | + "\n", |
| 87 | + "Load and prepare the images and masks by creating a data loader." |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": null, |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [], |
| 95 | + "source": [ |
| 96 | + "def get_mask_path(x, train_data_dir):\n", |
| 97 | + " return Path(train_data_dir) / f\"{Path(x).stem}.png\"" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "code", |
| 102 | + "execution_count": null, |
| 103 | + "metadata": {}, |
| 104 | + "outputs": [], |
| 105 | + "source": [ |
| 106 | + "bs = 8\n", |
| 107 | + "valid_pct = 0.20\n", |
| 108 | + "img_size = 256\n", |
| 109 | + "\n", |
| 110 | + "data_loader = SegmentationDataLoaders.from_label_func(\n", |
| 111 | + " path=train_data_dir,\n", |
| 112 | + " fnames=get_files(train_data_dir, extensions=\".jpg\"),\n", |
| 113 | + " label_func=partial(get_mask_path, train_data_dir=train_data_dir),\n", |
| 114 | + " codes=[\"not-pool\", \"pool\"],\n", |
| 115 | + " bs=bs,\n", |
| 116 | + " valid_pct=valid_pct,\n", |
| 117 | + " item_tfms=Resize(img_size),\n", |
| 118 | + " batch_tfms=[\n", |
| 119 | + " Normalize.from_stats(*imagenet_stats),\n", |
| 120 | + " ],\n", |
| 121 | + " )" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "attachments": {}, |
| 126 | + "cell_type": "markdown", |
| 127 | + "metadata": {}, |
| 128 | + "source": [ |
| 129 | + "### Review a sample batch of data\n", |
| 130 | + "\n", |
| 131 | + "Below are some examples of the images overlaid with their masks." |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "code", |
| 136 | + "execution_count": null, |
| 137 | + "metadata": {}, |
| 138 | + "outputs": [], |
| 139 | + "source": [ |
| 140 | + "data_loader.show_batch(alpha=0.7)" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "attachments": {}, |
| 145 | + "cell_type": "markdown", |
| 146 | + "metadata": {}, |
| 147 | + "source": [ |
| 148 | + "### Train multiple models with different learning rates using `DVCLiveCallback`\n", |
| 149 | + "\n", |
| 150 | + "Set up model training, using DVCLive to capture the results of each experiment." |
| 151 | + ] |
| 152 | + }, |
| 153 | + { |
| 154 | + "cell_type": "code", |
| 155 | + "execution_count": null, |
| 156 | + "metadata": {}, |
| 157 | + "outputs": [], |
| 158 | + "source": [ |
| 159 | + "def dice(mask_pred, mask_true, classes=[0, 1], eps=1e-6):\n", |
| 160 | + " dice_list = []\n", |
| 161 | + " for c in classes:\n", |
| 162 | + " y_true = mask_true == c\n", |
| 163 | + " y_pred = mask_pred == c\n", |
| 164 | + " intersection = 2.0 * np.sum(y_true * y_pred)\n", |
| 165 | + " dice = intersection / (np.sum(y_true) + np.sum(y_pred) + eps)\n", |
| 166 | + " dice_list.append(dice)\n", |
| 167 | + " return np.mean(dice_list)\n", |
| 168 | + "\n", |
| 169 | + "\n", |
| 170 | + "def evaluate(learn):\n", |
| 171 | + " test_img_fpaths = sorted(get_files(Path(\"data\") / \"test_data\", extensions=\".jpg\"))\n", |
| 172 | + " test_dl = learn.dls.test_dl(test_img_fpaths)\n", |
| 173 | + " preds, _ = learn.get_preds(dl=test_dl)\n", |
| 174 | + " masks_pred = np.array(preds[:, 1, :] > 0.5, dtype=np.uint8)\n", |
| 175 | + " test_mask_fpaths = [\n", |
| 176 | + " get_mask_path(fpath, Path(\"data\") / \"test_data\") for fpath in test_img_fpaths\n", |
| 177 | + " ]\n", |
| 178 | + " masks_true = [Image.open(mask_path) for mask_path in test_mask_fpaths]\n", |
| 179 | + "\n", |
| 180 | + " dice_multi = 0.0\n", |
| 181 | + " for ii in range(len(masks_true)):\n", |
| 182 | + " mask_pred, mask_true = masks_pred[ii], masks_true[ii]\n", |
| 183 | + " mask_pred = np.array(\n", |
| 184 | + " Image.fromarray(mask_pred).resize((mask_true.shape[1], mask_true.shape[0])),\n", |
| 185 | + " dtype=int\n", |
| 186 | + " )\n", |
| 187 | + " mask_true = np.array(mask_true, dtype=int)\n", |
| 188 | + " dice_multi += dice(mask_true, mask_pred) / len(masks_true)\n", |
| 189 | + "\n", |
| 190 | + " return dice_multi" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "code", |
| 195 | + "execution_count": null, |
| 196 | + "metadata": {}, |
| 197 | + "outputs": [], |
| 198 | + "source": [ |
| 199 | + "train_arch = 'shufflenet_v2_x2_0'\n", |
| 200 | + "\n", |
| 201 | + "for base_lr in [0.001, 0.005, 0.01]:\n", |
| 202 | + " # initialize dvclive, optionally provide output path, and show report in notebook\n", |
| 203 | + " # don't save dvc experiment until post-training metrics below\n", |
| 204 | + " with Live(\"results/train\", report=\"notebook\", save_dvc_exp=False) as live:\n", |
| 205 | + " # log a parameter\n", |
| 206 | + " live.log_param(\"train_arch\", train_arch)\n", |
| 207 | + " fine_tune_args = {\n", |
| 208 | + " 'epochs': 8,\n", |
| 209 | + " 'base_lr': base_lr\n", |
| 210 | + " }\n", |
| 211 | + " # log a dict of parameters\n", |
| 212 | + " live.log_params(fine_tune_args)\n", |
| 213 | + "\n", |
| 214 | + " learn = unet_learner(data_loader, \n", |
| 215 | + " arch=getattr(models, train_arch), \n", |
| 216 | + " metrics=DiceMulti)\n", |
| 217 | + " # train model and automatically capture metrics with DVCLiveCallback\n", |
| 218 | + " learn.fine_tune(\n", |
| 219 | + " **fine_tune_args,\n", |
| 220 | + " cbs=[DVCLiveCallback(live=live)])\n", |
| 221 | + "\n", |
| 222 | + " # save model artifact to dvc\n", |
| 223 | + " models_dir = Path(\"models\")\n", |
| 224 | + " models_dir.mkdir(exist_ok=True)\n", |
| 225 | + " learn.export(fname=(models_dir / \"model.pkl\").absolute())\n", |
| 226 | + " torch.save(learn.model, (models_dir / \"model.pth\").absolute())\n", |
| 227 | + " live.log_artifact(\n", |
| 228 | + " str(models_dir / \"model.pkl\"),\n", |
| 229 | + " type=\"model\",\n", |
| 230 | + " name=\"pool-segmentation\",\n", |
| 231 | + " desc=\"This is a Computer Vision (CV) model that's segmenting out swimming pools from satellite images.\",\n", |
| 232 | + " labels=[\"cv\", \"segmentation\", \"satellite-images\", \"unet\"],\n", |
| 233 | + " )\n", |
| 234 | + "\n", |
| 235 | + " # add additional post-training summary metrics.\n", |
| 236 | + " with Live(\"results/evaluate\") as live:\n", |
| 237 | + " live.summary[\"dice_multi\"] = evaluate(learn)" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": null, |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "# Compare experiments\n", |
| 247 | + "!dvc exp show --only-changed" |
| 248 | + ] |
| 249 | + }, |
| 250 | + { |
| 251 | + "attachments": {}, |
| 252 | + "cell_type": "markdown", |
| 253 | + "metadata": {}, |
| 254 | + "source": [ |
| 255 | + "### Review sample preditions vs ground truth\n", |
| 256 | + "\n", |
| 257 | + "Below are some example of the predicted masks." |
| 258 | + ] |
| 259 | + }, |
| 260 | + { |
| 261 | + "cell_type": "code", |
| 262 | + "execution_count": null, |
| 263 | + "metadata": {}, |
| 264 | + "outputs": [], |
| 265 | + "source": [ |
| 266 | + "learn.show_results(max_n=6, alpha=0.7)" |
| 267 | + ] |
| 268 | + }, |
| 269 | + { |
| 270 | + "cell_type": "code", |
| 271 | + "execution_count": null, |
| 272 | + "metadata": {}, |
| 273 | + "outputs": [], |
| 274 | + "source": [] |
| 275 | + } |
| 276 | + ], |
| 277 | + "metadata": { |
| 278 | + "kernelspec": { |
| 279 | + "display_name": "Python 3 (ipykernel)", |
| 280 | + "language": "python", |
| 281 | + "name": "python3" |
| 282 | + }, |
| 283 | + "language_info": { |
| 284 | + "codemirror_mode": { |
| 285 | + "name": "ipython", |
| 286 | + "version": 3 |
| 287 | + }, |
| 288 | + "file_extension": ".py", |
| 289 | + "mimetype": "text/x-python", |
| 290 | + "name": "python", |
| 291 | + "nbconvert_exporter": "python", |
| 292 | + "pygments_lexer": "ipython3", |
| 293 | + "version": "3.11.6" |
| 294 | + }, |
| 295 | + "vscode": { |
| 296 | + "interpreter": { |
| 297 | + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" |
| 298 | + } |
| 299 | + } |
| 300 | + }, |
| 301 | + "nbformat": 4, |
| 302 | + "nbformat_minor": 4 |
| 303 | +} |
0 commit comments