-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBackProp.java
696 lines (653 loc) · 23.4 KB
/
BackProp.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/**BackProp - a backpropagation neural network class 4/98 by
<a href=mailto:tiscione@hhs.net>Jason Tiscione</a>.
<br>Copyright (c) 1998. All Rights Reserved. You have a non-exclusive,
royalty free, LICENSE to use, modify and redistribute this software
in source and binary code form, provided that 1) this dubious legal
junk at the top appears on all copies of the software; and
ii) you don't use the software in a manner which is "disparaging"
to me- like making fun of the way I program.
This software is provided "AS IS," with no warranty of any kind.
NO MATTER WHAT, you can't sue me for anything. This software is
neither designed nor intended to be used for air traffic control
or for maintaining a nuclear facility, so don't get any crazy ideas.
<br>SUMMARY OF CLASS MEMBER VARIABLES:
<br>int R = size (# elements) of an input vector accepted by network
<br>int S1,S2,S3 = number of neurons in input, hidden, output layers
<br>double W1[][],W2[][],W3[][] = weight matrices of input, hidden, output layers
<br>double b1[][],b2[][],b3[][] = bias values of input, hidden, output layers
<br>int epoch= number of training presentations so far
<br>double lr= learning rate [default 0.01]
<br>double im= learning rate increase [default 1.05]
<br>double dm= learning rate decrease [default 0.7]
<br>double mc= momentum coefficient [default 0.9]
<br>double er= maximum error ratio [default 1.04]
<br> (The following variables are not used until trainInit() is called)
<br>int Q = number of training inputs
<br>double SSE = sum squared error
<br>double MC = current momentum
<br>double out1[][],out2[][],out3[][] = output from input, hidden, output layers
<br>double d1[][],d2[][],d3[][] = delta log array, for calculating dWn and dbn
<br>double dW1[][],dW2[][],dW3[][] = weight matrix differentials
<br>double db1[][],db2[][],db3[][] = bias matrix differentials
<br>double errors[][] = error matrix
<br>double inputs[][] = training inputs matrix
<br>double targets[][] = training targets matrix (usually an nxn identity matrix).<br>
@author <a href="mailto:tiscione@hhs.net>Jason Tiscione</a>
@version 1.0. No future revisions planned.
*/
public class BackProp extends Object {
private int R,S1,S2,S3,epoch;
private double[][] W1,W2,W3,b1,b2,b3;
private double lr,im,dm,mc,er;
int Q; //number of training inputs
private double SSE; //Sum squared error
private double MC; //current momentum
private double[][] out1,out2,out3,errors;
private double[][] d1,d2,d3,dW1,dW2,dW3,db1,db2,db3;
private double[][] inputs,targets;
/**Creates a new BackProp object, and initializes its weight & bias arrays.
@param R Size (number of elements) of an input vector accepted by network
@param S1 Number of neurons in input layer
@param S2 Number of neurons in hidden layer
@param S3 Number of neurons in output layer
@param lr Learning rate.
@param im Learning rate increase.
@param dm Learning rate decrease.
@param mc Momentum coefficient
@param er Maximum error ratio
@return BackProp object with specified properties
*/
public BackProp (int R, int S1, int S2,
int S3, double lr, double im,
double dm, double mc, double er)
{
this.R=R; this.S1=S1; this.S2=S2; this.S3=S3;
this.lr=lr; this.im=im; this.dm=dm; this.mc=mc; this.er=er;
//Call Nguyen-Widrow random initializer for log-sigmoid neurons.
InitWB(S1,R,1);
InitWB(S2,S1,2);
InitWB(S3,S2,3);
epoch=0;
}
/**This constructor simply takes as parameters the number of elements in
each input vector and the number of neurons in the input, hidden, and
output layers. It invokes the main constructor with default values for
its remaining parameters.
@param R Size (# elements) of an input vector accepted by network
@param S1 Number of neurons in input layer
@param S2 Number of neurons in hidden layer
@param S3 Number of neurons in output layer
@return BackProp object with specified properties
*/
public BackProp (int R, int S1, int S2, int S3) {
this (R,S1,S2,S3,0.01,1.05,0.7,0.9,1.04);
}
/**Used to test the network on a single given input. It is merely a
convenience method; this version of testNet() - there are two - takes
a 1-dimensional array (containing a single input vector) as its sole
argument, converts it from double[] to double[][], and passes it to
the other version of testNet (which should preferably be used
instead of this one.) The argument to this method should contain
R elements. It returns a double[][] with S3 rows and one column.
@param inputVector A single input vector, with R elements.
@return Matrix of network outputs.
*/
public double[][] testNet( double[] inputVector ) {
double[][] inputarray = new double[R][1];
for (int i=0;i<R;i++) {
inputarray[i][0]=inputVector[i];
}
return testNet (inputarray);
}
/**Used to test the network on a given input or inputs. The argument
is an array of inputs. It must have R rows. The number of columns is
arbitrary but must be at least one. This method will return an output
array with S3 rows and the same number of columns that the double[][]
argument has.
<p>Inputs to the network are constrained to the interval [0,1]; to use
this class with inputs that span a different range, a scaling algorithm
would need to be applied to the inputs and targets before calling this
method or trainInit().
<p>The trainInit() method (at least) should be called before invoking
testNet().
@param test_inputs A double[][] matrix of network inputs
@return A double[][] matrix of network outputs
*/
public double[][] testNet( double[][] test_inputs ) {
double[][] test_ip,test_out1,test_out2,test_out3;
test_ip = multiply(W1,test_inputs);
test_out1 = logsig (test_ip,b1);
test_ip = multiply(W2,test_out1);
test_out2 = logsig (test_ip,b2);
test_ip = multiply(W3,test_out2);
test_out3 = logsig (test_ip,b3);
return test_out3;
}
/**Establishes what the training inputs and targets are to be,
and prepares the network for subsequent calls to trainNet(). This
method need be called only once.
<p>The inputs[][] variable is set to the first argument, and so it must
have R rows and a number of columns which is at least one. The number of
columns establishes Q, the number of inputs. The targets[][] variable is
set to the second argument and so that must have S3 rows and Q columns.
If the number of columns in the two arguments are not the same, or if
the arguments do not have R and S3 rows respectively, the method returns
false. The individual input vectors and corresponding target vectors
used to train the network are thus the column vectors in the inputs[][]
and targets[][] arrays. All neuron activations in this network are
constrained to the interval [0,1] by a log-sigmoid function.
Inputs to the network are also constrained to this interval; to use
this class with a set of inputs that span a different range, a
scaling algorithm would need to be applied to the inputs and targets
before calling this method or testNet().
@param inputs A double[][] matrix of network inputs
@param targets A double[][] matrix of target network outputs
@return A boolean value indicating successful invocation.
*/
public boolean trainInit( double[][] inputs, double[][] targets ) {
// First initialize inputs and targets.
this.inputs = inputs;
this.targets= targets;
// First create arrays dW1,dW2,dW3 to be same size as W1,W2,W3 arrays.
// Java initializes all elements to zero so we don't need to.
double[][] ip; //used for inner products
dW1 = new double[S1][R];
dW2 = new double[S2][S1];
dW3 = new double[S3][S2];
db1 = new double[S1][1];
db2 = new double[S2][1];
db3 = new double[S3][1];
MC=0;
int[] dim_inputs = getSize(inputs);
int[] dim_targets = getSize(targets);
Q=dim_inputs[1];
errors=new double[S3][Q];
if (dim_targets[1] != Q) {
System.out.println("TrainNet: Inputs and targets are mismatched.");
return false;
}
if (dim_inputs[0] != R) {
System.out.println("TrainNet: Inputs do not match net structure.");
return false;
}
if (dim_targets[0] != S3) {
System.out.println("TrainNet: Targets do not match net structure.");
return false;
}
//PRESENTATION PHASE
ip = multiply(W1,inputs);
out1 = logsig (ip,b1);
ip = multiply(W2,out1);
out2 = logsig (ip,b2);
ip = multiply(W3,out2);
out3 = logsig (ip,b3);
//Compute errors matrix and sum-squared error (SSE).
SSE=0;
for (int i=0;i<S3;i++) {
for (int j=0;j<Q;j++) {
errors[i][j] = targets[i][j] - out3[i][j];
SSE += errors[i][j]*errors[i][j];
}
}
//BACKPROPAGATION PHASE
d3=deltalog(out3,errors);
d2=deltalog(out2,d3,W3);
d1=deltalog(out1,d2,W2);
return true;
}
/**Performs ONE iteration (i.e., one epoch) of the backpropagation
algorithm on the network. It updates the weight and bias arrays of
the network, and returns the sum squared error of the network's
output in comparison to the target array.
@return The SSE (sum-sqared error) of the network's output.
*/
public double trainNet() {
//Returns SSE after 1 epoch of training on Q input pattern vectors.
double new_SSE;
double[][] new_out1,new_out2,new_out3,new_errors;
double[][] ip; // Used for inner products
double[][] swap; //Used for swapping references
new_errors = new double[S3][Q];
// Create arrays new_W1,new_W2,new_W3
// and new_b1,new_b2,new_b3.
double new_W1[][] = new double[S1][R];
double new_W2[][] = new double[S2][S1];
double new_W3[][] = new double[S3][S2];
double new_b1[][] = new double[S1][1];
double new_b2[][] = new double[S2][1];
double new_b3[][] = new double[S3][1];
epoch++;
// LEARNING PHASE
// Calculate dW arrays and db arrays
// dW1:
for (int i=0;i<S1;i++) {
for (int j=0;j<R;j++) {
dW1[i][j] *= MC; // momentum term
for (int k=0;k<Q;k++) {
dW1[i][j] += lr * (1-MC) * d1[i][k] * inputs[j][k];
}
}
}
// db1:
for (int i=0;i<S1;i++) {
db1[i][0] *= MC; // momentum term
for (int k=0;k<Q;k++) {
db1[i][0] += lr * (1-MC) * d1[i][k];
}
}
// dW2:
for (int i=0;i<S2;i++) {
for (int j=0;j<S1;j++) {
dW2[i][j] *= MC; // momentum term
for (int k=0;k<Q;k++) {
dW2[i][j] += lr * (1-MC) * d2[i][k] * out1[j][k];
}
}
}
// db2:
for (int i=0;i<S2;i++) {
db2[i][0] *= MC;
for (int k=0;k<Q;k++) {
db2[i][0] += lr * (1-MC) * d2[i][k];
}
}
// dW3:
for (int i=0;i<S3;i++) {
for (int j=0;j<S2;j++) {
dW3[i][j] *= MC; // momentum term
for (int k=0;k<Q;k++) {
dW3[i][j] += lr * (1-MC) * d3[i][k] * out2[j][k];
}
}
}
// db3:
for (int i=0;i<S3;i++) {
db3[i][0] *= MC;
for (int k=0;k<Q;k++) {
db3[i][0] += lr * (1-MC) * d3[i][k];
}
}
// Add dW and db matrices to W and b to get new_W and new_b
MC=mc;
for (int i=0;i<S1;i++) {
new_b1[i][0] = b1[i][0] + db1[i][0];
for (int j=0;j<R;j++) {
new_W1[i][j] = W1[i][j] + dW1[i][j];
}
}
for (int i=0;i<S2;i++) {
new_b2[i][0] = b2[i][0] + db2[i][0];
for (int j=0;j<S1;j++) {
new_W2[i][j] = W2[i][j] + dW2[i][j];
}
}
for (int i=0;i<S3;i++) {
new_b3[i][0] = b3[i][0] + db3[i][0];
for (int j=0;j<S2;j++) {
new_W3[i][j] = W3[i][j] + dW3[i][j];
}
}
// PRESENTATION PHASE
ip = multiply(new_W1,inputs);
new_out1 = logsig (ip,new_b1);
ip = multiply(new_W2,new_out1);
new_out2 = logsig (ip,new_b2);
ip = multiply(new_W3,new_out2);
new_out3 = logsig (ip,new_b3);
//Compute errors matrix and sum-squared error (SSE).
new_SSE=0;
for (int i=0;i<S3;i++) {
for (int j=0;j<Q;j++) {
new_errors[i][j] = targets[i][j] - new_out3[i][j];
new_SSE += new_errors[i][j]*new_errors[i][j];
}
}
// MOMENTUM AND ADAPTIVE LEARNING RATE PHASE
if (new_SSE > SSE*er) {
lr *= dm;
MC=0; // kill momentum off
}
else {
if (new_SSE < SSE) {
lr *= im;
}
//Rotate pointers between old and new matrices
swap=W1; W1=new_W1; new_W1=swap;
swap=W2; W2=new_W2; new_W2=swap;
swap=W3; W3=new_W3; new_W3=swap;
swap=b1; b1=new_b1; new_b1=swap;
swap=b2; b2=new_b2; new_b2=swap;
swap=b3; b3=new_b3; new_b3=swap;
swap=out1; out1=new_out1; new_out1=swap;
swap=out2; out2=new_out2; new_out2=swap;
swap=out3; out3=new_out3; new_out3=swap;
swap=errors; errors=new_errors; new_errors=swap;
SSE=new_SSE;
}
//BACKPROPAGATION PHASE
d3 = deltalog(out3,errors);
d2 = deltalog(out2,d3,W3);
d1 = deltalog(out1,d2,W2);
return SSE;
}
/**
//@return Number of training epochs performed so far on the network
*/
public int getepoch() {
return epoch;
}
/**
@param n Integer specifying which layer's weight matrix you want. (1 for
input layer, 2 for hidden layer, 3 for output layer)
@return A double[][] matrix containing the current weight matrix of layer n
(has Sn rows, and S(n-1) columns- or R columns if n=1)
*/
public double[][] getWeightMatrix(int n) {
double[][] W;
switch (n) {
case 1:
W=W1;
break;
case 2:
W=W2;
break;
case 3:
W=W3;
break;
default:
System.out.println("getWeightMatrix: Invalid parameter");
return null;
}
return W;
}
/**
@param n Integer specifying which layer's bias vector you want. (1 for
input layer, 2 for hidden layer, 3 for output layer)
@return double[][] containing the current bias vector of layer n
(has Sn rows, one column)
*/
public double[][] getBiasVector(int n) {
double[][] b;
switch (n) {
case 1:
b=b1;
break;
case 2:
b=b2;
break;
case 3:
b=b3;
break;
default:
System.out.println("getBiasVector: Invalid parameter");
return null;
}
return b;
}
//---------------------------------------------------------------------
//-------- END OF PUBLIC API -------- PRIVATE METHODS FOLLOW ----------
//---------------------------------------------------------------------
/*---------------------------------------------------------------------
PRIVATE METHOD: InitWB
PARAMETERS: int S, int R, int n
RETURNS: void
ALTERS CLASS VARIABLES: W1,b1,W2,b2,W3,b3, depending on n
READS CLASS VARIABLES: none
This method is the Nguyen-Widrow random initializer for log-sigmoid neurons.
It establishes a properly sized and randomly initialized weight matrix and
bias vector for neuron layer n (comprised of S neurons) to use in
processing its R input values. This method is called by the constructor.
*/
private void InitWB(int S,int R,int n) {
//Method to establish a properly sized and randomly initialized
//weight matrix and bias vector for the neuron layer n (comprised
//of S neurons) to use in processing its R input values.
double[][] w = new double[S][R];
double[][] b = new double[S][1];
double acc,acc2;
double magw;
magw=2.8*(S^(1/R));
for (int i=0;i<S;i++) {
b[i][0]=(2*Math.random())-1;
acc=0;
for (int j=0;j<R;j++) {
w[i][j]=(2*Math.random())-1;
acc += (w[i][j]*w[i][j]);
}
// Normalize the "neuron i" row vector (in w) created in previous loop
acc = Math.sqrt(1/acc);
acc2 = 0;
for (int j=0;j<R;j++) {
w[i][j] *= (2 * acc);
acc2 += w[i][j];
}
//Normalize "neuron i" bias vector b with respect to its weights in w
b[i][0] -= (acc2/2);
}
//Now w and b are initialized and "presentable".
switch (n) {
case 1:
W1=w;
b1=b;
break;
case 2:
W2=w;
b2=b;
break;
case 3:
W3=w;
b3=b;
break;
default:
System.out.println("InitWB: Invalid network layer argument.");
}
}
/*---------------------------------------------------------------------
PRIVATE METHOD: logsig
PARAMETERS: double[][] ip, double[][] b
RETURNS: double [][] output from a log-sigmoid transfer function
ALTERS CLASS VARIABLES: none
READS CLASS VARIABLES: none
logsig adds the bias vector element from b to each element in the
corresponding row of ip (which is a matrix product of weights x inputs).
It then subjects each element of the result to a log-sigmoid transfer
function 1/(1+e^-x) and returns the resulting array.
*/
private double[][] logsig( double[][] ip, double[][] b ) {
int[] ip_dims = getSize(ip);
double[][] out = new double[ip_dims[0]][ip_dims[1]];
for (int i=0;i<ip_dims[0];i++) {
for (int j=0;j<ip_dims[1];j++) {
ip[i][j] += b[i][0];
out[i][j] = 1/(1+Math.exp(-ip[i][j]));
}
}
return out;
}
/*---------------------------------------------------------------------
PRIVATE METHOD: deltalog
PARAMETERS: double[][] out, double[][] err
RETURNS: double [][] matrix of derivatives of error for an output layer.
ALTERS CLASS VARIABLES: none
READS CLASS VARIABLES: none
This version of deltalog takes two arguments: out[][], an SnxQ matrix
of outputs from layer n, and err[][], an SnxQ matrix of associated errors
from layer n. The value returned is an SnxQ matrix of derivatives of
error for the output layer. This version is used for the output layer only.
The input and hidden layers do not have their associated errors readily
available and they must be calculated indirectly using the chain rule of
derivatives.
*/
private double[][] deltalog( double[][] out, double[][] err) {
int[] dims=getSize(out); //should be same as getSize(err)
double[][] delta= new double[dims[0]][dims[1]];
for (int i=0;i<dims[0];i++){
for (int j=0;j<dims[1];j++) {
delta[i][j]=out[i][j]*(1-out[i][j])*err[i][j];
}
}
return delta;
}
/*---------------------------------------------------------------------
PRIVATE METHOD: deltalog
PARAMETERS: double[][] out, double[][] d, double[][] w
RETURNS: double [][] matrix of derivatives of error for a layer.
ALTERS CLASS VARIABLES: none
READS CLASS VARIABLES: none
This version of deltalog takes 3 arguments: out[][], an SnxQ matrix
of outputs from layer n, d[][], the S(n+1)xQ matrix of derivatives of
error for the succeeding layer, and w, the weight matrix for that layer.
It calculates the SnxQ matrix of associated errors for layer n by applying
the chain rule of derivatives, using the weight matrix and error derivative
of the previous layer. This version is used for the input and hidden
layers only. The output layer has its associated error available already,
and does not need to have it computed.
*/
private double[][] deltalog( double[][] out, double[][] d, double[][] w) {
// out is an SnxQ matrix of outputs from layer n.
// d is an SnxQ matrix of derivatives of error for layer n+1.
// w is the associated weight matrix of layer n+1.
// This method computes err- the SnxQ matrix of associated errors
// for layer n- using d and w.
// This method is typically used for the input and hidden layers only.
int[] dims=getSize(out);
double[][] delta = new double[dims[0]][dims[1]];
double[][] wt = transpose(w);
double[][] err = multiply(wt,d);
for (int i=0;i<dims[0];i++){
for (int j=0;j<dims[1];j++) {
delta[i][j]=out[i][j]*(1-out[i][j])*err[i][j];
}
}
return delta;
}
/*---------------------------------------------------------------------
PRIVATE METHOD: multiply
PARAMETERS: double[][] A, double[][] B
RETURNS: double [][] AxB, the inner product of the matrix arguments.
ALTERS CLASS VARIABLES: none
READS CLASS VARIABLES: none
This is simply a method to multiply two matrices. It is used frequently.
If A and B are not compatible for multiplication, this method returns a
null value.
*/
private double[][] multiply(double[][] A, double[][] B) {
// Method to multiply two matrices: AxB=C
int[] dimA = getSize(A);
int[] dimB = getSize(B);
int Am = dimA[0];
int An = dimA[1];
int Bm = dimB[0];
int Bn = dimB[1];
int[] tmp = getSize(B);
if (An != Bm) {
// # columns in A must equal # rows in B for AxB to be defined
System.out.println("multiply error");
System.out.println("rows in A "+Am);
System.out.println("cols in A "+An);
System.out.println("rows in B "+Bm);
System.out.println("cols in B "+Bn);
return null;
}
double[][] C = new double[Am][Bn];
for (int i=0;i<Am;i++) {
for (int j=0;j<Bn;j++) {
C[i][j]=0;
for (int k=0;k<An;k++) {
C[i][j] += A[i][k]*B[k][j];
}
}
}
return C;
}
/*---------------------------------------------------------------------
PRIVATE METHOD: transpose
PARAMETERS: double[][] A
RETURNS: double [][] transpose of matrix argument
ALTERS CLASS VARIABLES: none
READS CLASS VARIABLES: none
This method simply returns the transpose of a matrix. It is called
by the three-argument version of deltalog.
*/
private double[][] transpose(double[][] A) {
// returns transpose of a matrix A
int[] dim_A = getSize(A);
int m=dim_A[0];
int n=dim_A[1];
double[][] At = new double[n][m];
for (int i=0;i<m;i++) {
for (int j=0;j<n;j++) {
At[j][i]=A[i][j];
}
}
return At;
}
/*---------------------------------------------------------------------
PRIVATE METHOD: getSize
PARAMETERS: double[][] A
RETURNS: int[] containing dimensions of A
ALTERS CLASS VARIABLES: none
READS CLASS VARIABLES: none
Java's array "length" field only returns the number of rows in a
2-D array- there is no easy way to get the number of columns.
This method will return a two-element int array containing the
dimension of its 2-D double[][] argument, i.e. number of rows and
columns contained in a RECTANGULAR double[][] array A. It searches
for the lowest array column index that will generate an
ArrayIndexOutOfBoundsException. This method only scans the length
of the first row. It is not expecting funny arrays that are triangular
or otherwise irregularly shaped but it will still work on them.
*/
private int[] getSize(double[][] A) {
double temp;
boolean gotCols;
int[] dims=new int[2];
int stepsize,Cols;
dims[0]=A.length; //The # of rows is the easy part!
stepsize=1024;
Cols=stepsize;
gotCols=false;
while (gotCols==false) {
try {
temp=A[0][Cols];
//Executed normally... Cols is within bounds of array
Cols += stepsize;
}
catch (java.lang.ArrayIndexOutOfBoundsException e) {
// Uh oh, index "Cols" is out of bounds!
if (stepsize==1) { gotCols=true; }
else {
Cols -= stepsize;
stepsize /= 2;
}
}
}
dims[1]=Cols;
return dims;
}
/*---------------------------------------------------------------------
PRIVATE METHOD: diagnostic
PARAMETERS: double[][] testarray, String message
RETURNS: void
ALTERS CLASS VARIABLES: none
READS CLASS VARIABLES: none
This is a debugging method that I decided to leave in here because it
may prove handy to anyone modifying the code. All it does is spit out
the sum and sum of squares of the first column of an input matrix to
the console output, preceded by the String argument. It is useful if
you want to determine how array contents are changing between
subsequent calls.
*/
private void diagnostic(double[][] testarray, String message) {
int M = testarray.length;
double acc = 0;
double accsq = 0;
for (int i=0;i<M;i++) {
acc += testarray[i][0];
accsq += (testarray[i][0]*testarray[i][0]);
}
System.out.println(message);
System.out.println("acc "+acc+" accsq "+accsq);
System.out.println("-------------------------------");
}
}