Open
Description
When I run MLP.py ,GMF.py or ,NeuMF.py with my GPU (GTX 1080), the memory of which is fulled while the volatile GPU-Util are always around 20%. And the time-spending with GPU is slower than CPU (intel i5)。
I guess the problem are caused by
# Training
hist = model.fit([np.array(user_input), np.array(item_input)], #input
np.array(labels), # labels
batch_size=batch_size, epochs=1, verbose=0, shuffle=True)
in the codes of above, np.array(user_input), np.array(item_input),np.array(labels) is runing on the CPU but GPU.
Therefore, the useage of GPU-Util can not raise.
Metadata
Metadata
Assignees
Labels
No labels