|
36 | 36 | % By default, confidence intervals and Null Hypothesis Significance Tests
|
37 | 37 | % (NHSTs) for the regression coefficients (H0 = 0) are calculated by wild
|
38 | 38 | % bootstrap-t and are robust when normality and homoscedasticity cannot be
|
39 |
| -% assumed. |
| 39 | +% assumed [1]. |
40 | 40 | %
|
41 | 41 | % Usage of this function is very similar to that of 'anovan'. Data (Y)
|
42 | 42 | % is a numeric variable, and the predictor(s) are specified in GROUP (a.k.a.
|
|
115 | 115 | %
|
116 | 116 | % o 'wild' (default): Wild bootstrap-t, using the 'bootwild'
|
117 | 117 | % function. Please see the help documentation below and in the
|
118 |
| -% function 'bootwild' for more information about this method. |
| 118 | +% function 'bootwild' for more information about this method [1]. |
119 | 119 | %
|
120 | 120 | % o 'bayesian': Bayesian bootstrap, using the 'bootbayes' function.
|
121 | 121 | % Please see the help documentation below and in the function
|
122 |
| -% 'bootbayes' for more information about this method. |
| 122 | +% 'bootbayes' for more information about this method [2]. |
123 | 123 | %
|
124 | 124 | % Note that p-values are a frequentist concept and are only computed
|
125 | 125 | % and returned from bootlm when the METHOD is 'wild'. Since the wild
|
|
144 | 144 | %
|
145 | 145 | % o 'auto': Sets a value for PRIOR that effectively incorporates
|
146 | 146 | % Bessel's correction a priori such that the variance of the
|
147 |
| -% posterior (i.e. the rows of BOOTSTAT) becomes an unbiased |
| 147 | +% posterior (i.e. of the rows of BOOTSTAT) becomes an unbiased |
148 | 148 | % estimator of the sampling variance*. The calculation used for
|
149 | 149 | % 'auto' is as follows:
|
150 | 150 | %
|
|
166 | 166 | % to Bayes rule: a uniform (or flat) Dirichlet distribution
|
167 | 167 | % (over all points in its support). Please see the help
|
168 | 168 | % documentation for the function 'bootbayes' for more information
|
169 |
| -% about the prior. |
| 169 | +% about the prior [2]. |
170 | 170 | %
|
171 | 171 | % '[...] = bootlm (Y, GROUP, ..., 'alpha', ALPHA)'
|
172 | 172 | %
|
|
177 | 177 | % o scalar: Set the central mass of the intervals to 100*(1-ALPHA)%.
|
178 | 178 | % For example, 0.05 for a 95% interval. If METHOD is 'wild',
|
179 | 179 | % then the intervals are symmetric bootstrap-t confidence
|
180 |
| -% intervals. If METHOD is 'bayesian', then the intervals are |
181 |
| -% shortest probability credible intervals. |
| 180 | +% intervals [1]. If METHOD is 'bayesian', then the intervals |
| 181 | +% are shortest probability credible intervals [2]. |
182 | 182 | %
|
183 | 183 | % o vector: A pair of probabilities defining the lower and upper
|
184 | 184 | % and upper bounds of the interval(s) as 100*(ALPHA(1))% and
|
185 | 185 | % 100*(ALPHA(2))% respectively. For example, [.025, .975] for
|
186 | 186 | % a 95% interval. If METHOD is 'wild', then the intervals are
|
187 |
| -% asymmetric bootstrap-t confidence intervals. If METHOD is |
| 187 | +% asymmetric bootstrap-t confidence intervals [1]. If METHOD is |
188 | 188 | % 'bayesian', then the intervals are simple percentile credible
|
189 |
| -% intervals. |
| 189 | +% intervals [2]. |
190 | 190 | %
|
191 | 191 | % The default value of ALPHA is the scalar: 0.05.
|
192 | 192 | %
|
|
391 | 391 | % - 'CI_lower': The lower bound(s) of the confidence/credible interval(s)
|
392 | 392 | % - 'CI_upper': The upper bound(s) of the confidence/credible interval(s)
|
393 | 393 | % - 'pval': The p-value(s) for the hypothesis that the estimate(s) == 0
|
394 |
| -% - 'fpr': The minimum false positive risk (FPR) for each p-value |
| 394 | +% - 'fpr': The minimum false positive risk (FPR) for each p-value [3]. |
395 | 395 | % - 'N': The number of independent sampling units used to compute CIs
|
396 | 396 | % - 'prior': The prior used for Bayesian bootstrap. This will return a
|
397 | 397 | % scalar for regression coefficients, or a P x 1 or P x 2
|
|
424 | 424 | % - 'MS': Mean-squares
|
425 | 425 | % - 'F': F-Statistic
|
426 | 426 | % - 'PVAL': p-values
|
427 |
| -% - 'FPR': The minimum false positive risk for each p-value |
| 427 | +% - 'FPR': The minimum false positive risk for each p-value [3] |
428 | 428 | % - 'SSE': Sum-of-Squared Error
|
429 | 429 | % - 'DFE': Degrees of Freedom for Error
|
430 | 430 | % - 'MSE': Mean Squared Error
|
|
438 | 438 | % the method used is 'wild' bootstrap AND when no other statistics are
|
439 | 439 | % requested (i.e. estimated marginal means or posthoc tests). The
|
440 | 440 | % bootstrap is achieved by wild bootstrap of the residuals from the full
|
441 |
| -% model. Computations of the statistics in AOVSTAT are compatible with |
442 |
| -% the 'clustid' and 'blocksz' options. |
| 441 | +% model [1,4]. Computations of the statistics in AOVSTAT are compatible |
| 442 | +% with the 'clustid' and 'blocksz' options. |
443 | 443 | %
|
444 | 444 | % The bootlm function treats all model predictors as fixed effects during
|
445 | 445 | % ANOVA tests. While any type of predictor, be it a fixed effect or
|
|
457 | 457 | % sample sizes are equal or not.
|
458 | 458 | %
|
459 | 459 | % '[STATS, BOOTSTAT, AOVSTAT, PRED_ERR] = bootlm (...)' also computes
|
460 |
| -% refined bootstrap estimates of prediction error* and returns the derived |
461 |
| -% statistics in a structure with the following fields: |
| 460 | +% refined bootstrap estimates of prediction error* and returns statistics |
| 461 | +% derived from it in a structure containing the following fields: |
462 | 462 | % - 'MODEL': The formula of the linear model(s) in Wilkinson's notation
|
463 |
| -% - 'PE': Bootstrap estimate of prediction error |
| 463 | +% - 'PE': Bootstrap estimate of prediction error [5] |
464 | 464 | % - 'PRESS': Bootstrap estimate of predicted residual error sum of squares
|
465 | 465 | % - 'RSQ_pred': Bootstrap estimate of predicted R-squared
|
466 |
| -% - 'EIC': Extended (Efron) Information Criterion |
| 466 | +% - 'EIC': Extended (Efron) Information Criterion [6] |
467 | 467 | % - 'RL': Relative likelihood (compared to the intercept-only model)
|
468 | 468 | % - 'Wt': EIC expressed as weights
|
469 | 469 | %
|
|
485 | 485 | % regression coefficients (b), the hypothesis matrix (L) and the outcome (Y)
|
486 | 486 | % for the linear model.
|
487 | 487 | %
|
| 488 | +% Bibliography: |
| 489 | +% [1] Penn, A.C. statistics-resampling manual: `bootwild` function reference. |
| 490 | +% https://gnu-octave.github.io/statistics-resampling/function/bootwild.html |
| 491 | +% and references therein. Last accessed 02 Sept 2024. |
| 492 | +% [2] Penn, A.C. statistics-resampling manual: `bootbayes` function reference. |
| 493 | +% https://gnu-octave.github.io/statistics-resampling/function/bootbayes.html |
| 494 | +% and references therein. Last accessed 02 Sept 2024. |
| 495 | +% [3] David Colquhoun (2019) The False Positive Risk: A Proposal Concerning |
| 496 | +% What to Do About p-Values, The American Statistician, 73:sup1, 192-201 |
| 497 | +% [4] ter Braak (1992) Permutation versus bootstrap significance test in |
| 498 | +% multiple regression and ANOVA. In Jockel et al (Eds.) Bootstrapping |
| 499 | +% and Related Techniques. Springer-Verlag, Berlin, pg 79-86 |
| 500 | +% [5] Efron and Tibshirani (1993) An Introduction to the Bootstrap. |
| 501 | +% New York, NY: Chapman & Hall. pg 247-252 |
| 502 | +% [6] Konishi & Kitagawa (2008), "Bootstrap Information Criterion" In: |
| 503 | +% Information Criteria and Statistical Modeling. Springer Series in |
| 504 | +% Statistics. Springer, NY. |
| 505 | +% |
488 | 506 | % bootlm (version 2024.07.08)
|
489 | 507 | % Author: Andrew Charles Penn
|
490 | 508 | % https://www.researchgate.net/profile/Andrew_Penn/
|
|
0 commit comments