Skip to content

Commit 58aa2c9

Browse files
committed
added references to bootlm help documentation and function reference
1 parent dcf89d1 commit 58aa2c9

File tree

1 file changed

+35
-17
lines changed

1 file changed

+35
-17
lines changed

inst/bootlm.m

Lines changed: 35 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@
3636
% By default, confidence intervals and Null Hypothesis Significance Tests
3737
% (NHSTs) for the regression coefficients (H0 = 0) are calculated by wild
3838
% bootstrap-t and are robust when normality and homoscedasticity cannot be
39-
% assumed.
39+
% assumed [1].
4040
%
4141
% Usage of this function is very similar to that of 'anovan'. Data (Y)
4242
% is a numeric variable, and the predictor(s) are specified in GROUP (a.k.a.
@@ -115,11 +115,11 @@
115115
%
116116
% o 'wild' (default): Wild bootstrap-t, using the 'bootwild'
117117
% function. Please see the help documentation below and in the
118-
% function 'bootwild' for more information about this method.
118+
% function 'bootwild' for more information about this method [1].
119119
%
120120
% o 'bayesian': Bayesian bootstrap, using the 'bootbayes' function.
121121
% Please see the help documentation below and in the function
122-
% 'bootbayes' for more information about this method.
122+
% 'bootbayes' for more information about this method [2].
123123
%
124124
% Note that p-values are a frequentist concept and are only computed
125125
% and returned from bootlm when the METHOD is 'wild'. Since the wild
@@ -144,7 +144,7 @@
144144
%
145145
% o 'auto': Sets a value for PRIOR that effectively incorporates
146146
% Bessel's correction a priori such that the variance of the
147-
% posterior (i.e. the rows of BOOTSTAT) becomes an unbiased
147+
% posterior (i.e. of the rows of BOOTSTAT) becomes an unbiased
148148
% estimator of the sampling variance*. The calculation used for
149149
% 'auto' is as follows:
150150
%
@@ -166,7 +166,7 @@
166166
% to Bayes rule: a uniform (or flat) Dirichlet distribution
167167
% (over all points in its support). Please see the help
168168
% documentation for the function 'bootbayes' for more information
169-
% about the prior.
169+
% about the prior [2].
170170
%
171171
% '[...] = bootlm (Y, GROUP, ..., 'alpha', ALPHA)'
172172
%
@@ -177,16 +177,16 @@
177177
% o scalar: Set the central mass of the intervals to 100*(1-ALPHA)%.
178178
% For example, 0.05 for a 95% interval. If METHOD is 'wild',
179179
% then the intervals are symmetric bootstrap-t confidence
180-
% intervals. If METHOD is 'bayesian', then the intervals are
181-
% shortest probability credible intervals.
180+
% intervals [1]. If METHOD is 'bayesian', then the intervals
181+
% are shortest probability credible intervals [2].
182182
%
183183
% o vector: A pair of probabilities defining the lower and upper
184184
% and upper bounds of the interval(s) as 100*(ALPHA(1))% and
185185
% 100*(ALPHA(2))% respectively. For example, [.025, .975] for
186186
% a 95% interval. If METHOD is 'wild', then the intervals are
187-
% asymmetric bootstrap-t confidence intervals. If METHOD is
187+
% asymmetric bootstrap-t confidence intervals [1]. If METHOD is
188188
% 'bayesian', then the intervals are simple percentile credible
189-
% intervals.
189+
% intervals [2].
190190
%
191191
% The default value of ALPHA is the scalar: 0.05.
192192
%
@@ -391,7 +391,7 @@
391391
% - 'CI_lower': The lower bound(s) of the confidence/credible interval(s)
392392
% - 'CI_upper': The upper bound(s) of the confidence/credible interval(s)
393393
% - 'pval': The p-value(s) for the hypothesis that the estimate(s) == 0
394-
% - 'fpr': The minimum false positive risk (FPR) for each p-value
394+
% - 'fpr': The minimum false positive risk (FPR) for each p-value [3].
395395
% - 'N': The number of independent sampling units used to compute CIs
396396
% - 'prior': The prior used for Bayesian bootstrap. This will return a
397397
% scalar for regression coefficients, or a P x 1 or P x 2
@@ -424,7 +424,7 @@
424424
% - 'MS': Mean-squares
425425
% - 'F': F-Statistic
426426
% - 'PVAL': p-values
427-
% - 'FPR': The minimum false positive risk for each p-value
427+
% - 'FPR': The minimum false positive risk for each p-value [3]
428428
% - 'SSE': Sum-of-Squared Error
429429
% - 'DFE': Degrees of Freedom for Error
430430
% - 'MSE': Mean Squared Error
@@ -438,8 +438,8 @@
438438
% the method used is 'wild' bootstrap AND when no other statistics are
439439
% requested (i.e. estimated marginal means or posthoc tests). The
440440
% bootstrap is achieved by wild bootstrap of the residuals from the full
441-
% model. Computations of the statistics in AOVSTAT are compatible with
442-
% the 'clustid' and 'blocksz' options.
441+
% model [1,4]. Computations of the statistics in AOVSTAT are compatible
442+
% with the 'clustid' and 'blocksz' options.
443443
%
444444
% The bootlm function treats all model predictors as fixed effects during
445445
% ANOVA tests. While any type of predictor, be it a fixed effect or
@@ -457,13 +457,13 @@
457457
% sample sizes are equal or not.
458458
%
459459
% '[STATS, BOOTSTAT, AOVSTAT, PRED_ERR] = bootlm (...)' also computes
460-
% refined bootstrap estimates of prediction error* and returns the derived
461-
% statistics in a structure with the following fields:
460+
% refined bootstrap estimates of prediction error* and returns statistics
461+
% derived from it in a structure containing the following fields:
462462
% - 'MODEL': The formula of the linear model(s) in Wilkinson's notation
463-
% - 'PE': Bootstrap estimate of prediction error
463+
% - 'PE': Bootstrap estimate of prediction error [5]
464464
% - 'PRESS': Bootstrap estimate of predicted residual error sum of squares
465465
% - 'RSQ_pred': Bootstrap estimate of predicted R-squared
466-
% - 'EIC': Extended (Efron) Information Criterion
466+
% - 'EIC': Extended (Efron) Information Criterion [6]
467467
% - 'RL': Relative likelihood (compared to the intercept-only model)
468468
% - 'Wt': EIC expressed as weights
469469
%
@@ -485,6 +485,24 @@
485485
% regression coefficients (b), the hypothesis matrix (L) and the outcome (Y)
486486
% for the linear model.
487487
%
488+
% Bibliography:
489+
% [1] Penn, A.C. statistics-resampling manual: `bootwild` function reference.
490+
% https://gnu-octave.github.io/statistics-resampling/function/bootwild.html
491+
% and references therein. Last accessed 02 Sept 2024.
492+
% [2] Penn, A.C. statistics-resampling manual: `bootbayes` function reference.
493+
% https://gnu-octave.github.io/statistics-resampling/function/bootbayes.html
494+
% and references therein. Last accessed 02 Sept 2024.
495+
% [3] David Colquhoun (2019) The False Positive Risk: A Proposal Concerning
496+
% What to Do About p-Values, The American Statistician, 73:sup1, 192-201
497+
% [4] ter Braak (1992) Permutation versus bootstrap significance test in
498+
% multiple regression and ANOVA. In Jockel et al (Eds.) Bootstrapping
499+
% and Related Techniques. Springer-Verlag, Berlin, pg 79-86
500+
% [5] Efron and Tibshirani (1993) An Introduction to the Bootstrap.
501+
% New York, NY: Chapman & Hall. pg 247-252
502+
% [6] Konishi & Kitagawa (2008), "Bootstrap Information Criterion" In:
503+
% Information Criteria and Statistical Modeling. Springer Series in
504+
% Statistics. Springer, NY.
505+
%
488506
% bootlm (version 2024.07.08)
489507
% Author: Andrew Charles Penn
490508
% https://www.researchgate.net/profile/Andrew_Penn/

0 commit comments

Comments
 (0)