-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcheckers.cc
300 lines (258 loc) · 9.08 KB
/
checkers.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <tuple>
#include "buffer.hh"
/*
* 2019, Giulio Zausa
* gcc checkers.cc -o checkers -l stdc++ -l SDL2 -std=c++17 -Ofast
*/
#define WIDTH 640
#define HEIGHT 480
#define convCoord(x, y) (y * WIDTH + x)
struct Vector3 {
float x, y, z;
static inline Vector3 cross(const Vector3 a, const Vector3 b) {
Vector3 r;
r.x = a.y * b.z - a.z * b.y;
r.y = a.z * b.x - a.x * b.z;
r.z = a.x * b.y - a.y * b.x;
return r;
}
};
struct Vector4 {
float x, y, z, w;
};
struct Point {
float x, y;
};
Vector3 barycentric(const std::array<Point, 3> pts, const Point P) {
Vector3 a = {pts[2].x - pts[0].x, pts[1].x - pts[0].x, pts[0].x - P.x};
Vector3 b = {pts[2].y - pts[0].y, pts[1].y - pts[0].y, pts[0].y - P.y};
Vector3 u = Vector3::cross(a, b);
Vector3 dest;
if (fabsf(u.z) < 1) {
// degenerate triangle
dest.x = -1;
dest.y = 1;
dest.z = 1;
} else {
dest.x = 1.f - (u.x + u.y) / u.z;
dest.y = u.y / u.z;
dest.z = u.x / u.z;
}
return dest;
}
struct Matrix4 {
float m11, m21, m31, m41;
float m12, m22, m32, m42;
float m13, m23, m33, m43;
float m14, m24, m34, m44;
static auto identity() {
return Matrix4{
1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0,
};
}
static auto scale(const Vector3 &scale) {
return Matrix4{
scale.x, 0.0, 0.0, 0.0, 0.0, scale.y, 0.0, 0.0,
0.0, 0.0, scale.z, 0.0, 0.0, 0.0, 0.0, 1.0,
};
}
static auto translation(const Vector3 &t) {
return Matrix4{
1.0, 0.0, 0.0, t.x, 0.0, 1.0, 0.0, t.y,
0.0, 0.0, 1.0, t.z, 0.0, 0.0, 0.0, 1.0,
};
}
static auto rotationX(const float radians) {
auto c = cos(radians);
auto s = sin(radians);
return Matrix4{
1.0f, 0.0f, 0.0f, 0.0f, 0.0f, c, s, 0.0f,
0.0f, -s, c, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
};
}
static auto rotationY(const float radians) {
auto c = cos(radians);
auto s = sin(radians);
return Matrix4{
c, 0.0f, -s, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
s, 0.0f, c, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
};
}
static auto rotationZ(const float radians) {
auto c = cos(radians);
auto s = sin(radians);
return Matrix4{
c, s, 0.0f, 0.0f, -s, c, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
};
}
static auto perspective() {
return Matrix4{
1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0,
};
}
static auto transformVector3(const Vector3 &v, const Matrix4 &m,
float w = 1.0) {
return Vector3{v.x * m.m11 + v.y * m.m21 + v.z * m.m31 + m.m41 * w,
v.x * m.m12 + v.y * m.m22 + v.z * m.m32 + m.m42 * w,
v.x * m.m13 + v.y * m.m23 + v.z * m.m33 + m.m43 * w};
}
static auto transformVector4(const Vector3 &v, const Matrix4 &m,
float w = 1.0) {
return Vector4{v.x * m.m11 + v.y * m.m21 + v.z * m.m31 + m.m41 * w,
v.x * m.m12 + v.y * m.m22 + v.z * m.m32 + m.m42 * w,
v.x * m.m13 + v.y * m.m23 + v.z * m.m33 + m.m43 * w,
v.x * m.m14 + v.y * m.m24 + v.z * m.m34 + m.m44 * w};
}
Matrix4 operator*(Matrix4 value2) {
Matrix4 m;
m.m11 = m11 * value2.m11 + m12 * value2.m21 + m13 * value2.m31 +
m14 * value2.m41;
m.m12 = m11 * value2.m12 + m12 * value2.m22 + m13 * value2.m32 +
m14 * value2.m42;
m.m13 = m11 * value2.m13 + m12 * value2.m23 + m13 * value2.m33 +
m14 * value2.m43;
m.m14 = m11 * value2.m14 + m12 * value2.m24 + m13 * value2.m34 +
m14 * value2.m44;
m.m21 = m21 * value2.m11 + m22 * value2.m21 + m23 * value2.m31 +
m24 * value2.m41;
m.m22 = m21 * value2.m12 + m22 * value2.m22 + m23 * value2.m32 +
m24 * value2.m42;
m.m23 = m21 * value2.m13 + m22 * value2.m23 + m23 * value2.m33 +
m24 * value2.m43;
m.m24 = m21 * value2.m14 + m22 * value2.m24 + m23 * value2.m34 +
m24 * value2.m44;
m.m31 = m31 * value2.m11 + m32 * value2.m21 + m33 * value2.m31 +
m34 * value2.m41;
m.m32 = m31 * value2.m12 + m32 * value2.m22 + m33 * value2.m32 +
m34 * value2.m42;
m.m33 = m31 * value2.m13 + m32 * value2.m23 + m33 * value2.m33 +
m34 * value2.m43;
m.m34 = m31 * value2.m14 + m32 * value2.m24 + m33 * value2.m34 +
m34 * value2.m44;
m.m41 = m41 * value2.m11 + m42 * value2.m21 + m43 * value2.m31 +
m44 * value2.m41;
m.m42 = m41 * value2.m12 + m42 * value2.m22 + m43 * value2.m32 +
m44 * value2.m42;
m.m43 = m41 * value2.m13 + m42 * value2.m23 + m43 * value2.m33 +
m44 * value2.m43;
m.m44 = m41 * value2.m14 + m42 * value2.m24 + m43 * value2.m34 +
m44 * value2.m44;
return m;
}
};
template <int width, int height>
inline auto toScreenSpace(const Vector4 &v) {
auto aspect = (float)height / width;
auto px = ((v.x / v.w) * aspect * width / 2) + width / 2;
auto py = height / 2 - ((v.y / v.w) * height / 2);
return Point{px, py};
}
template <size_t nVertices, size_t nIndices>
struct Mesh {
std::array<Vector3, nVertices> vertices;
std::array<int, nIndices> indices;
Mesh(const std::array<Vector3, nVertices> &vertices,
const std::array<int, nIndices> &indices) {
this->vertices = vertices;
this->indices = indices;
}
};
template <typename arr>
auto ptsBBox(arr pts) {
Point bboxmin = {WIDTH - 1, HEIGHT - 1};
Point bboxmax = {0, 0};
Point clamp = {WIDTH - 1, HEIGHT - 1};
for (const auto &pt : pts) {
bboxmin.x = std::max(0.0f, std::min(bboxmin.x, pt.x));
bboxmax.x = std::min(clamp.x, std::max(bboxmax.x, pt.x));
bboxmin.y = std::max(0.0f, std::min(bboxmin.y, pt.y));
bboxmax.y = std::min(clamp.y, std::max(bboxmax.y, pt.y));
}
return std::tuple(floor(bboxmin.x), floor(bboxmin.y), ceil(bboxmax.x),
ceil(bboxmax.y));
}
template <size_t nVertices, size_t nIndices>
void drawMesh(uint32_t *buf, float *zbuffer, uint32_t color,
const Mesh<nVertices, nIndices> &mesh,
Matrix4 transform = Matrix4::identity()) {
auto transformedV = std::array<Vector4, nVertices>{};
std::transform(
mesh.vertices.begin(), mesh.vertices.end(), transformedV.begin(),
[&](auto v) { return Matrix4::transformVector4(v, transform); });
auto drawTriangle = [&](auto a, auto b, auto c) {
// Bail out if poligon outside of screen
// TODO: clipping triangles
if (transformedV[a].z < 0 || transformedV[b].z < 0 ||
transformedV[c].z < 0) {
return;
}
const auto pa = toScreenSpace<WIDTH, HEIGHT>(transformedV[a]);
const auto pb = toScreenSpace<WIDTH, HEIGHT>(transformedV[b]);
const auto pc = toScreenSpace<WIDTH, HEIGHT>(transformedV[c]);
const auto points = std::array{pa, pb, pc};
const auto [bboxminX, bboxminY, bboxmaxX, bboxmaxY] = ptsBBox(points);
Point p = {0, 0};
for (p.y = bboxminY; p.y <= bboxmaxY; p.y += 1.0f) {
for (p.x = bboxminX; p.x <= bboxmaxX; p.x += 1.0f) {
const auto bary = barycentric(points, p);
if (bary.x >= 0 && bary.y >= 0 && bary.z >= 0) {
const int coord = (int)convCoord(p.x, p.y);
const bool zbufferOver = zbuffer[coord] < bary.z;
if (zbufferOver) {
zbuffer[coord] = bary.z;
buf[coord] = color;
}
}
}
}
};
for (size_t i = 0; i < mesh.indices.size(); i += 3) {
drawTriangle(mesh.indices[i], mesh.indices[i + 1], mesh.indices[i + 2]);
}
}
void drawChecker(uint32_t *buf, float *zbuffer, uint32_t colorA,
uint32_t colorB, float w, float h,
Matrix4 transform = Matrix4::identity()) {
for (float x = 0; x < w; x += 2.0) {
for (float z = 0; z < h; z += 2.0) {
auto mesh = Mesh(
std::array{
Vector3{-1.0f + x - w / 2.0f, 0.0f, 1.0f + z - h / 2.0f},
Vector3{1.0f + x - w / 2.0f, 0.0f, 1.0f + z - h / 2.0f},
Vector3{1.0f + x - w / 2.0f, 0.0f, -1.0f + z - h / 2.0f},
Vector3{-1.0f + x - w / 2.0f, 0.0f, -1.0f + z - h / 2.0f},
},
std::array{0, 1, 3, 1, 2, 3});
auto mode = (int)(x + z) % 4 == 0;
drawMesh(buf, zbuffer, mode ? colorA : colorB, mesh, transform);
}
}
}
int main() {
auto wnd = BufferWindow<WIDTH, HEIGHT>();
auto zbuffer = new float[WIDTH * HEIGHT];
auto time = 0.0;
while (!wnd.checkExit()) {
wnd.startDraw();
memset(wnd.pixels, 0, WIDTH * HEIGHT * 4);
auto transform = Matrix4::rotationY(time / 500.0) *
Matrix4::translation(Vector3{0.0, -4.0, 0.0}) *
Matrix4::scale(Vector3{0.2, 0.2, 0.2}) *
Matrix4::perspective();
drawChecker(wnd.pixels, zbuffer, 0xFFFF0000, 0xFF0000FF, 100.0f, 100.0f,
transform);
std::fill(zbuffer, zbuffer + (WIDTH * HEIGHT), 0);
wnd.endDraw();
time += wnd.getDeltaTime();
}
return 0;
}