|
| 1 | +# names of hurricanes |
| 2 | +names = ['Cuba I', 'San Felipe II Okeechobee', 'Bahamas', 'Cuba II', 'CubaBrownsville', 'Tampico', 'Labor Day', 'New England', 'Carol', 'Janet', 'Carla', 'Hattie', 'Beulah', 'Camille', 'Edith', 'Anita', 'David', 'Allen', 'Gilbert', 'Hugo', 'Andrew', 'Mitch', 'Isabel', 'Ivan', 'Emily', 'Katrina', 'Rita', 'Wilma', 'Dean', 'Felix', 'Matthew', 'Irma', 'Maria', 'Michael'] |
| 3 | + |
| 4 | +# months of hurricanes |
| 5 | +months = ['October', 'September', 'September', 'November', 'August', 'September', 'September', 'September', 'September', 'September', 'September', 'October', 'September', 'August', 'September', 'September', 'August', 'August', 'September', 'September', 'August', 'October', 'September', 'September', 'July', 'August', 'September', 'October', 'August', 'September', 'October', 'September', 'September', 'October'] |
| 6 | + |
| 7 | +# years of hurricanes |
| 8 | +years = [1924, 1928, 1932, 1932, 1933, 1933, 1935, 1938, 1953, 1955, 1961, 1961, 1967, 1969, 1971, 1977, 1979, 1980, 1988, 1989, 1992, 1998, 2003, 2004, 2005, 2005, 2005, 2005, 2007, 2007, 2016, 2017, 2017, 2018] |
| 9 | + |
| 10 | +# maximum sustained winds (mph) of hurricanes |
| 11 | +max_sustained_winds = [165, 160, 160, 175, 160, 160, 185, 160, 160, 175, 175, 160, 160, 175, 160, 175, 175, 190, 185, 160, 175, 180, 165, 165, 160, 175, 180, 185, 175, 175, 165, 180, 175, 160] |
| 12 | + |
| 13 | +# areas affected by each hurricane |
| 14 | +areas_affected = [['Central America', 'Mexico', 'Cuba', 'Florida', 'The Bahamas'], ['Lesser Antilles', 'The Bahamas', 'United States East Coast', 'Atlantic Canada'], ['The Bahamas', 'Northeastern United States'], ['Lesser Antilles', 'Jamaica', 'Cayman Islands', 'Cuba', 'The Bahamas', 'Bermuda'], ['The Bahamas', 'Cuba', 'Florida', 'Texas', 'Tamaulipas'], ['Jamaica', 'Yucatn Peninsula'], ['The Bahamas', 'Florida', 'Georgia', 'The Carolinas', 'Virginia'], ['Southeastern United States', 'Northeastern United States', 'Southwestern Quebec'], ['Bermuda', 'New England', 'Atlantic Canada'], ['Lesser Antilles', 'Central America'], ['Texas', 'Louisiana', 'Midwestern United States'], ['Central America'], ['The Caribbean', 'Mexico', 'Texas'], ['Cuba', 'United States Gulf Coast'], ['The Caribbean', 'Central America', 'Mexico', 'United States Gulf Coast'], ['Mexico'], ['The Caribbean', 'United States East coast'], ['The Caribbean', 'Yucatn Peninsula', 'Mexico', 'South Texas'], ['Jamaica', 'Venezuela', 'Central America', 'Hispaniola', 'Mexico'], ['The Caribbean', 'United States East Coast'], ['The Bahamas', 'Florida', 'United States Gulf Coast'], ['Central America', 'Yucatn Peninsula', 'South Florida'], ['Greater Antilles', 'Bahamas', 'Eastern United States', 'Ontario'], ['The Caribbean', 'Venezuela', 'United States Gulf Coast'], ['Windward Islands', 'Jamaica', 'Mexico', 'Texas'], ['Bahamas', 'United States Gulf Coast'], ['Cuba', 'United States Gulf Coast'], ['Greater Antilles', 'Central America', 'Florida'], ['The Caribbean', 'Central America'], ['Nicaragua', 'Honduras'], ['Antilles', 'Venezuela', 'Colombia', 'United States East Coast', 'Atlantic Canada'], ['Cape Verde', 'The Caribbean', 'British Virgin Islands', 'U.S. Virgin Islands', 'Cuba', 'Florida'], ['Lesser Antilles', 'Virgin Islands', 'Puerto Rico', 'Dominican Republic', 'Turks and Caicos Islands'], ['Central America', 'United States Gulf Coast (especially Florida Panhandle)']] |
| 15 | + |
| 16 | +# damages (USD($)) of hurricanes |
| 17 | +damages = ['Damages not recorded', '100M', 'Damages not recorded', '40M', '27.9M', '5M', 'Damages not recorded', '306M', '2M', '65.8M', '326M', '60.3M', '208M', '1.42B', '25.4M', 'Damages not recorded', '1.54B', '1.24B', '7.1B', '10B', '26.5B', '6.2B', '5.37B', '23.3B', '1.01B', '125B', '12B', '29.4B', '1.76B', '720M', '15.1B', '64.8B', '91.6B', '25.1B'] |
| 18 | + |
| 19 | +# deaths for each hurricane |
| 20 | +deaths = [90,4000,16,3103,179,184,408,682,5,1023,43,319,688,259,37,11,2068,269,318,107,65,19325,51,124,17,1836,125,87,45,133,603,138,3057,74] |
| 21 | + |
| 22 | +# 1 |
| 23 | +# Update Recorded Damages |
| 24 | +conversion = {"M": 1000000, |
| 25 | + "B": 1000000000} |
| 26 | +def updated_damages_fn(damages): |
| 27 | + updated_damages = [] |
| 28 | + for damage in damages: |
| 29 | + if 'Damages not recorded' in damage: |
| 30 | + updated_damages.append(damage) |
| 31 | + if 'M' in damage: |
| 32 | + updated_damages.append(float(damage.strip('M'))*conversion['M']) |
| 33 | + if 'B' in damage: |
| 34 | + updated_damages.append(float(damage.strip('B'))*conversion['B']) |
| 35 | + return updated_damages |
| 36 | + |
| 37 | +# test function by updating damages |
| 38 | +updated_damages = updated_damages_fn(damages) |
| 39 | +#print(updated_damages) |
| 40 | + |
| 41 | +# 2 |
| 42 | +# Create a Table |
| 43 | +def dict_fn(names, months, years, max_sustained_winds,updated_damages, areas_affected, deaths): |
| 44 | + dict = {} |
| 45 | + for i in range(len(names)): |
| 46 | + dict[names[i]] = {'Name': names[i], 'Month': months[i], 'Year': years[i], 'Max Sustained Wind': max_sustained_winds[i], 'Areas Affected': areas_affected[i], 'Damage': updated_damages[i], 'Deaths': deaths[i]} |
| 47 | + return dict |
| 48 | + |
| 49 | +dict = dict_fn(names, months, years, max_sustained_winds,updated_damages, areas_affected, deaths) |
| 50 | + |
| 51 | +print(dict) |
| 52 | + |
| 53 | +#print(dict_fn(names, months, years, max_sustained_winds,updated_damages, areas_affected, deaths)) |
| 54 | + |
| 55 | + |
| 56 | +# Create and view the hurricanes dictionary |
| 57 | + |
| 58 | +# 3 |
| 59 | +# Organizing by Year |
| 60 | +def year_dict(dict): |
| 61 | + hurricane_years = {} |
| 62 | +#for loop that checks if year in hurricane_years, and adds data |
| 63 | + for data in dict.values(): |
| 64 | + for year, lst in hurricane_years.items(): |
| 65 | + if data['Year'] == year: |
| 66 | + lst.append(data) |
| 67 | + hurricane_years.update({data['Year']: [data]}) |
| 68 | + return hurricane_years |
| 69 | + |
| 70 | +# create a new dictionary of hurricanes with year and key |
| 71 | +year_dict = year_dict(dict) |
| 72 | +#print(year_dict) |
| 73 | + |
| 74 | +# 4 |
| 75 | +# Counting Damaged Areas |
| 76 | + |
| 77 | +# create dictionary of areas to store the number of hurricanes involved in |
| 78 | + |
| 79 | +def areas_affecteddict(dict): |
| 80 | + total_areas_affected = [] |
| 81 | + total_areas_affected_dict = {} |
| 82 | + #areas_affected_dict = defaultdict(total_areas_affected) |
| 83 | + for hurricanes in dict.values(): |
| 84 | + for key,values in hurricanes.items(): |
| 85 | + if key == 'Areas Affected': |
| 86 | + total_areas_affected += values |
| 87 | + for i in total_areas_affected: |
| 88 | + if i not in total_areas_affected_dict: |
| 89 | + total_areas_affected_dict[i] = 1 |
| 90 | + if i in total_areas_affected_dict: |
| 91 | + total_areas_affected_dict[i] += 1 |
| 92 | + return total_areas_affected_dict |
| 93 | + |
| 94 | +dict_areas_affected = areas_affecteddict(dict) |
| 95 | +#print(dict_areas_affected) |
| 96 | + |
| 97 | + |
| 98 | +# 5 |
| 99 | +# Calculating Maximum Hurricane Count |
| 100 | +def max_hurricane_count(dict_areas_affected): |
| 101 | + max = 0 |
| 102 | + max_affected = '' |
| 103 | + for key, value in dict_areas_affected.items(): |
| 104 | + if value > max: |
| 105 | + max = value |
| 106 | + max_affected = key |
| 107 | + return max_affected, max |
| 108 | +max_hurricane = max_hurricane_count(dict_areas_affected) |
| 109 | +#print(max_hurricane) |
| 110 | + |
| 111 | +# find most frequently affected area and the number of hurricanes involved in |
| 112 | + |
| 113 | + |
| 114 | +# 6 |
| 115 | +# Calculating the Deadliest Hurricane |
| 116 | +def deadliest_hurricane(dict): |
| 117 | + max_value = 0 |
| 118 | + max = '' |
| 119 | + for i in dict.values(): |
| 120 | + for key, value in i.items(): |
| 121 | + if key == 'Deaths': |
| 122 | + if value > max_value: |
| 123 | + max_value = value |
| 124 | + max = i['Name'] |
| 125 | + return max, max_value |
| 126 | + |
| 127 | +deadliest_hurricane = deadliest_hurricane(dict) |
| 128 | +#print(deadliest_hurricane) |
| 129 | + |
| 130 | + |
| 131 | +# find highest mortality hurricane and the number of deaths |
| 132 | +mortality_scale = {0: 0, |
| 133 | + 1: 100, |
| 134 | + 2: 500, |
| 135 | + 3: 1000, |
| 136 | + 4: 10000} |
| 137 | +# 7 |
| 138 | +# Rating Hurricanes by Mortality |
| 139 | +def hurricanes_by_mortality(dict): |
| 140 | + hurricanes_by_mortalitydict = {0: '',1: '', 2: '', 3: '',4:''} |
| 141 | + for i in dict.values(): |
| 142 | + for key, value in i.items(): |
| 143 | + if key == 'Deaths': |
| 144 | + if value == 0: |
| 145 | + hurricanes_by_mortalitydict[0] += ',' + i['Name'] |
| 146 | + if value > 0 and value >= 100: |
| 147 | + hurricanes_by_mortalitydict[1] += ',' + i['Name'] |
| 148 | + if value > 100 and value >= 500: |
| 149 | + hurricanes_by_mortalitydict[2] += ',' + i['Name'] |
| 150 | + if value > 500 and value >= 1000: |
| 151 | + hurricanes_by_mortalitydict[3] += ',' + i['Name'] |
| 152 | + if value > 1000 and value >= 10000: |
| 153 | + hurricanes_by_mortalitydict[4] += ',' + i['Name'] |
| 154 | + return hurricanes_by_mortalitydict |
| 155 | +hurricanes_by_mortalitydict = hurricanes_by_mortality(dict) |
| 156 | +#print(hurricanes_by_mortalitydict) |
| 157 | + |
| 158 | + |
| 159 | + |
| 160 | + |
| 161 | + |
| 162 | +# categorize hurricanes in new dictionary with mortality severity as key |
| 163 | + |
| 164 | + |
| 165 | +# 8 Calculating Hurricane Maximum Damage |
| 166 | + |
| 167 | +# find highest damage inducing hurricane and its total cost |
| 168 | +def max_damage(dict): |
| 169 | + max_damage = '' |
| 170 | + cost = 0 |
| 171 | + for i in dict.values(): |
| 172 | + for key, value in i.items(): |
| 173 | + if key == "Damage": |
| 174 | + if value == "Damages not recorded": |
| 175 | + continue |
| 176 | + if int(value) > cost: |
| 177 | + cost = value |
| 178 | + max_damage = i['Name'] |
| 179 | + return max_damage, cost |
| 180 | +max_damages = max_damage(dict) |
| 181 | +#print(max_damages) |
| 182 | + |
| 183 | +# 9 |
| 184 | +# Rating Hurricanes by Damage |
| 185 | +damage_scale = {0: 0, |
| 186 | + 1: 100000000, |
| 187 | + 2: 1000000000, |
| 188 | + 3: 10000000000, |
| 189 | + 4: 50000000000} |
| 190 | + |
| 191 | +# categorize hurricanes in new dictionary with damage severity as key |
| 192 | +def damage_scale(dict): |
| 193 | + damage_scale_dict = {0: '', |
| 194 | + 1: '', |
| 195 | + 2: '', |
| 196 | + 3: '', |
| 197 | + 4: ''} |
| 198 | + for i in dict.values(): |
| 199 | + for key, value in i.items(): |
| 200 | + if key == "Damage": |
| 201 | + if value == "Damages not recorded": |
| 202 | + continue |
| 203 | + if value == 0: |
| 204 | + damage_scale_dict[0] += i['Name'] |
| 205 | + if value > 100000000: |
| 206 | + damage_scale_dict[1] += i['Name'] + ', ' |
| 207 | + if value > 1000000000: |
| 208 | + damage_scale_dict[2] += i['Name'] + ', ' |
| 209 | + if value > 10000000000: |
| 210 | + damage_scale_dict[3] += i['Name'] + ', ' |
| 211 | + if value > 5000000000: |
| 212 | + damage_scale_dict[4] += i['Name'] + ', ' |
| 213 | + return damage_scale_dict |
| 214 | +damage_scale = damage_scale(dict) |
| 215 | +print(damage_scale) |
0 commit comments