Skip to content

adding a csg / stl / stp simulation comparison to tests #6

Open
@shimwell

Description

@shimwell

Test the same 3d model made with 3 different methods

Perhaps this code can be used

# # move to neutronics_workflow
# class TestSimulationResultsVsCsg(unittest.TestCase):
#     """Makes a geometry in the paramak and in CSG geometry, simulates and
#     compares the results"""

#     def simulate_cylinder_cask_csg(
#         self, material, source, height, outer_radius, thickness, batches, particles
#     ):
#         """Makes a CSG cask geometry runs a simulation and returns the result"""

#         mats = openmc.Materials([material])

#         outer_cylinder = openmc.ZCylinder(r=outer_radius)
#         inner_cylinder = openmc.ZCylinder(r=outer_radius - thickness)
#         inner_top = openmc.ZPlane(z0=height * 0.5)
#         inner_bottom = openmc.ZPlane(z0=-height * 0.5)
#         outer_top = openmc.ZPlane(z0=(height * 0.5) + thickness)
#         outer_bottom = openmc.ZPlane(z0=(-height * 0.5) - thickness)

#         sphere_1 = openmc.Sphere(r=100, boundary_type="vacuum")

#         cylinder_region = -outer_cylinder & +inner_cylinder & -inner_top & +inner_bottom
#         cylinder_cell = openmc.Cell(region=cylinder_region)
#         cylinder_cell.fill = material

#         top_cap_region = -outer_top & +inner_top & -outer_cylinder
#         top_cap_cell = openmc.Cell(region=top_cap_region)
#         top_cap_cell.fill = material

#         bottom_cap_region = +outer_bottom & -inner_bottom & -outer_cylinder
#         bottom_cap_cell = openmc.Cell(region=bottom_cap_region)
#         bottom_cap_cell.fill = material

#         inner_void_region = -inner_cylinder & -inner_top & +inner_bottom
#         inner_void_cell = openmc.Cell(region=inner_void_region)

#         # sphere 1 region is below -sphere_1 and not (~) in the other regions
#         sphere_1_region = -sphere_1
#         sphere_1_cell = openmc.Cell(
#             region=sphere_1_region
#             & ~bottom_cap_region
#             & ~top_cap_region
#             & ~cylinder_region
#             & ~inner_void_region
#         )

#         universe = openmc.Universe(
#             cells=[
#                 inner_void_cell,
#                 cylinder_cell,
#                 top_cap_cell,
#                 bottom_cap_cell,
#                 sphere_1_cell,
#             ]
#         )

#         geom = openmc.Geometry(universe)

#         # Instantiate a Settings object
#         sett = openmc.Settings()
#         sett.batches = batches
#         sett.particles = particles
#         sett.inactive = 0
#         sett.run_mode = "fixed source"
#         sett.photon_transport = True
#         sett.source = source

#         cell_filter = openmc.CellFilter([cylinder_cell, top_cap_cell, bottom_cap_cell])

#         tally = openmc.Tally(name="csg_heating")
#         tally.filters = [cell_filter]
#         tally.scores = ["heating"]
#         tallies = openmc.Tallies()
#         tallies.append(tally)

#         model = openmc.model.Model(geom, mats, sett, tallies)
#         sp_filename = model.run()

#         # open the results file
#         results = openmc.StatePoint(sp_filename)

#         # access the tally using pandas dataframes
#         tally = results.get_tally(name="csg_heating")
#         tally_df = tally.get_pandas_dataframe()

#         return tally_df["mean"].sum()

#     def simulate_cylinder_cask_cad(
#         self, material, source, height, outer_radius, thickness, batches, particles
#     ):
#         """Makes a CAD cask geometry runs a simulation and returns the result"""

#         top_cap_cell = paramak.RotateStraightShape(
#             stp_filename="top_cap_cell.stp",
#             material_tag="test_mat",
#             points=[
#                 (outer_radius, height * 0.5),
#                 (outer_radius, (height * 0.5) + thickness),
#                 (0, (height * 0.5) + thickness),
#                 (0, height * 0.5),
#             ],
#         )

#         bottom_cap_cell = paramak.RotateStraightShape(
#             stp_filename="bottom_cap_cell.stp",
#             material_tag="test_mat",
#             points=[
#                 (outer_radius, -height * 0.5),
#                 (outer_radius, (-height * 0.5) - thickness),
#                 (0, (-height * 0.5) - thickness),
#                 (0, -height * 0.5),
#             ],
#         )

#         cylinder_cell = paramak.CenterColumnShieldCylinder(
#             height=height,
#             inner_radius=outer_radius - thickness,
#             outer_radius=outer_radius,
#             material_tag="test_mat",
#         )

#         my_geometry = paramak.Reactor(
#             shapes_and_components=[cylinder_cell, bottom_cap_cell, top_cap_cell],
#             method="pymoab",
#         )

#         my_model = openmc_dagmc_wrapper.NeutronicsModel(
#             h5m_filename=my_geometry.export_h5m(),
#             source=source,
#             simulation_batches=batches,
#             simulation_particles_per_batch=particles,
#             materials={"test_mat": material},
#             cell_tallies=["heating"],
#         )

#         my_model.simulate()

#         # scaled from MeV to eV
#         return (
#             my_model.results["test_mat_heating"]["MeV per source particle"]["result"]
#             * 1e6
#         )

#     def test_cylinder_cask(self):
#         """Runs the same source and material with CAD and CSG geoemtry"""

#         height = 100
#         outer_radius = 50
#         thickness = 10

#         batches = 10
#         particles = 500

#         test_material = openmc.Material(name="test_material")
#         test_material.set_density("g/cm3", 7.75)
#         test_material.add_element("Fe", 0.95, percent_type="wo")
#         test_material.add_element("C", 0.05, percent_type="wo")

#         source = openmc.Source()
#         source.space = openmc.stats.Point((0, 0, 0))
#         source.angle = openmc.stats.Isotropic()
#         source.energy = openmc.stats.Discrete([14e6], [1.0])

#         csg_result = self.simulate_cylinder_cask_csg(
#             test_material, source, height, outer_radius, thickness, batches, particles
#         )

#         cad_result = self.simulate_cylinder_cask_cad(
#             test_material, source, height, outer_radius, thickness, batches, particles
#         )

#         assert pytest.approx(csg_result, rel=0.02) == cad_result

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions