Skip to content

Commit 153e5ff

Browse files
committed
Update readme
1 parent 6893baf commit 153e5ff

File tree

1 file changed

+18
-202
lines changed

1 file changed

+18
-202
lines changed

README.md

+18-202
Original file line numberDiff line numberDiff line change
@@ -1,210 +1,26 @@
1-
# Python for Machine Learning
1+
# Getting started
22

3-
## Intro
3+
## Requirements
44

5-
- Python을 계속 사용하면서 Data를 다루는 데에 있어 기초가 부족하다는 것을 느꼈기 때문에 Machine Learning과 관련된 Python Code들을 정리하고자 한다.
6-
- Numpy, Pandas, Matplotlib 등 Data Handling에 보다 더 집중하여 공부할 것이다.
5+
This repository is implemented and verified on python 3.8.12.
76

8-
## Contents
9-
10-
### 01. [Pythonic Code](https://github.com/dongminleeai/Python-for-ML/tree/master/01.%20Pythonic%20Code)
11-
12-
1. [Lecture](https://github.com/dongminleeai/Python-for-ML/tree/master/01.%20Pythonic%20Code/Lecture)
13-
14-
- [Pythonic Code](https://github.com/dongminleeai/Python-for-ML/blob/master/01.%20Pythonic%20Code/Lecture/01-1.%20Pythonic%20Code.ipynb)
15-
- Overview
16-
- Split & Join
17-
- List Comprehension
18-
- Enumerate & Zip
19-
- Lambda & MapReduce
20-
- Asterisk
21-
- Data Structure - Collections
22-
- Linear algebra codes
23-
24-
- [News Categorization](https://github.com/dongminleeai/Python-for-ML/blob/master/01.%20Pythonic%20Code/Lecture/01-2.%20News%20Categorization.ipynb)
25-
- One-hot Encoding
26-
- Bag of words
27-
- Distance measure
28-
- Euclidian distance
29-
- Cosine distance
30-
- Corpus 만들기 + 단어별 index 생성하기
31-
- 문서별로 Bag of words vector 생성
32-
- Cosine similarity로 비교하기
33-
- Top n similarity news 뽑아내기
34-
- Accuracy 측정하기
35-
36-
2. [Assignment](https://github.com/dongminleeai/Python-for-ML/tree/master/01.%20Pythonic%20Code/Assignment/1.%20Pythonic%20Code%20Lab)
37-
38-
- [Pythonic Code Lab](https://github.com/dongminleeai/Python-for-ML/tree/master/01.%20Pythonic%20Code/Assignment/1.%20Pythonic%20Code%20Lab)
39-
40-
- vector_size_check
41-
- vector_addition
42-
- vector_subtraction
43-
- scalar_vector_product
44-
- matrix_size_check
45-
- is_matrix_equal
46-
- matrix_addition
47-
- matrix_subtraction
48-
- matrix_transpose
49-
- scalar_matrix_product
50-
- is_product_availability_matrix
51-
- matrix_product
7+
## Installation
528

53-
<br>
9+
Clone the repository and run one of the following commands.
5410

55-
### 02. [Data Handling](https://github.com/dongminleeai/Python-for-ML/tree/master/02.%20Data%20Handling)
11+
```shell
12+
$ make setup
13+
```
5614

57-
1. [Lecture](https://github.com/dongminleeai/Python-for-ML/tree/master/02.%20Data%20Handling/Lecture)
58-
59-
- [Overview](https://github.com/dongminleeai/Python-for-ML/blob/master/02.%20Data%20Handling/Lecture/02-1.%20Overview.ipynb)
60-
61-
- [Numpy](https://github.com/dongminleeai/Python-for-ML/blob/master/02.%20Data%20Handling/Lecture/02-2.%20Numpy.ipynb)
62-
- Numpy이란?
63-
- Numpy 특징
64-
- Array creation
65-
- shape
66-
- dtype
67-
- Handling shape
68-
- reshape
69-
- flatten
70-
- Indexing & Sclicing
71-
- Creation function
72-
- arange
73-
- ones, zeros & empty
74-
- something_like
75-
- identity
76-
- eye
77-
- diag
78-
- random sampling
79-
- Operation functions
80-
- sum
81-
- axis
82-
- mean & std
83-
- Mathematical functions
84-
- concatenate
85-
- Array operations
86-
- Operations b/t arrays
87-
- Element-wise operations
88-
- Dot product
89-
- transpose
90-
- broadcasting
91-
- Numpy performance
92-
- Comparisons
93-
- All & Any
94-
- Comparison operation
95-
- np.where
96-
- argmax & argmin
97-
- Boolean & Fancy index
98-
- boolean index
99-
- fancy index
100-
- Numpy data i/o
101-
- loadtxt & savetxt
102-
- numpy object - npy
103-
104-
- [Pandas](https://github.com/dongminleeai/Python-for-ML/blob/master/02.%20Data%20Handling/Lecture/02-3.%20Pandas.ipynb)
105-
- Pandas란?
106-
- 데이터 로딩
107-
- Pandas의 구성
108-
- Series
109-
- Dataframe
110-
- Selection & Drop
111-
- Selection with column names
112-
- Selection with index number
113-
- Series selection
114-
- Index 변경
115-
- Basic, loc, iloc selection
116-
- index 재설정
117-
- Data drop
118-
- Dataframe Operations
119-
- Series operation
120-
- Dataframe operation
121-
- Series + Dataframe
122-
- Lambda, Map, Apply
123-
- Map for series
124-
- Replace function
125-
- Apply for dataframe
126-
- Applymap for dataframe
127-
- Pandas Built-in functions
128-
- describe
129-
- unique
130-
- label str -> index 값으로 변환
131-
- sum
132-
- isnull
133-
- sort_values
134-
- Groupby
135-
- Groupby 사용법
136-
- Hierarchical index
137-
- unstack()
138-
- swaplevel()
139-
- gropued
140-
- aggregation
141-
- transformation
142-
- filter
143-
- Case study (phone_data.csv)
144-
- Pivot table & Crosstab
145-
- Merge & Concat
146-
- Merge
147-
- Inner join
148-
- Left join
149-
- Right join
150-
- Full(outer) join
151-
- Concat
152-
- Persistence
153-
- DB persistence
154-
- XLS persistence
155-
- Pickle persistence
156-
157-
- [Matplotlib](https://github.com/dongminleeai/Python-for-ML/blob/master/02.%20Data%20Handling/Lecture/02-4.%20Matplotlib.ipynb)
158-
- Matplotlib란?
159-
- 기본 사용법
160-
- Matplotlib
161-
- Set color
162-
- Set linstyle
163-
- Set title
164-
- Set legend
165-
- Set grid & xylim
166-
- Matplotlib Graph
167-
- Scatter
168-
- Bar chart
169-
- Histogram
170-
- Boxplot
171-
- Matplotlib with pandas
172-
173-
- [Data Cleaning](https://github.com/dongminleeai/Python-for-ML/blob/master/02.%20Data%20Handling/Lecture/02-5.%20Data%20Cleansing.ipynb)
174-
- Data problems
175-
- Data quality problems
176-
- Data preprocessing issues
177-
- Missing Values
178-
- 데이터가 없을 때 할 수 있는 전략
179-
- Data drop
180-
- Data Fill
181-
- Category data
182-
- One Hot Encoding
183-
- Data binning
184-
- Feature scaling
185-
- Min-Max Normalization
186-
- Z-Score Normalization
187-
188-
- [Kaggle - Titanic](https://github.com/dongminleeai/Python-for-ML/blob/master/02.%20Data%20Handling/Lecture/02-6.%20Kaggle%20-%20Titanic.ipynb)
189-
- Titanic이란?
190-
- Load dataset
191-
- Data preproecessing
192-
- Check null values
193-
- Drop Columns
194-
- Add to null values
195-
- One-Hot Encoding Columns
196-
- Build Model
197-
198-
2. [Assignment](https://github.com/dongminleeai/Python-for-ML/tree/master/02.%20Data%20Handling/Assignment)
15+
## Contents
19916

200-
- [Numpy Lab](https://github.com/dongminleeai/Python-for-ML/tree/master/02.%20Data%20Handling/Assignment/1.%20Numpy%20Lab)
17+
If you want to see jupyter notebook files better, please see them in [nbviewer](https://nbviewer.org/github/dongminlee94/Python-for-ML).
20118

202-
- n_size_ndarray_creation
203-
- zero_or_one_or_empty_ndarray
204-
- change_shape_of_ndarray
205-
- concat_ndarray
206-
- normalize_ndarray
207-
- save_ndarray
208-
- boolean_index
209-
- find_nearest_value
210-
- get_n_largest_values
19+
1. [Pythonic code]()
20+
2. [News categorization]()
21+
3. [Overview]()
22+
4. [Numpy]()
23+
5. [Pandas]()
24+
6. [Matplotlib]()
25+
7. [Data cleansing]()
26+
8. [Kaggle - Titanic]()

0 commit comments

Comments
 (0)