|
1 |
| -# Python for Machine Learning |
| 1 | +# Getting started |
2 | 2 |
|
3 |
| -## Intro |
| 3 | +## Requirements |
4 | 4 |
|
5 |
| -- Python을 계속 사용하면서 Data를 다루는 데에 있어 기초가 부족하다는 것을 느꼈기 때문에 Machine Learning과 관련된 Python Code들을 정리하고자 한다. |
6 |
| -- Numpy, Pandas, Matplotlib 등 Data Handling에 보다 더 집중하여 공부할 것이다. |
| 5 | +This repository is implemented and verified on python 3.8.12. |
7 | 6 |
|
8 |
| -## Contents |
9 |
| - |
10 |
| -### 01. [Pythonic Code](https://github.com/dongminleeai/Python-for-ML/tree/master/01.%20Pythonic%20Code) |
11 |
| - |
12 |
| -1. [Lecture](https://github.com/dongminleeai/Python-for-ML/tree/master/01.%20Pythonic%20Code/Lecture) |
13 |
| - |
14 |
| - - [Pythonic Code](https://github.com/dongminleeai/Python-for-ML/blob/master/01.%20Pythonic%20Code/Lecture/01-1.%20Pythonic%20Code.ipynb) |
15 |
| - - Overview |
16 |
| - - Split & Join |
17 |
| - - List Comprehension |
18 |
| - - Enumerate & Zip |
19 |
| - - Lambda & MapReduce |
20 |
| - - Asterisk |
21 |
| - - Data Structure - Collections |
22 |
| - - Linear algebra codes |
23 |
| - |
24 |
| - - [News Categorization](https://github.com/dongminleeai/Python-for-ML/blob/master/01.%20Pythonic%20Code/Lecture/01-2.%20News%20Categorization.ipynb) |
25 |
| - - One-hot Encoding |
26 |
| - - Bag of words |
27 |
| - - Distance measure |
28 |
| - - Euclidian distance |
29 |
| - - Cosine distance |
30 |
| - - Corpus 만들기 + 단어별 index 생성하기 |
31 |
| - - 문서별로 Bag of words vector 생성 |
32 |
| - - Cosine similarity로 비교하기 |
33 |
| - - Top n similarity news 뽑아내기 |
34 |
| - - Accuracy 측정하기 |
35 |
| - |
36 |
| -2. [Assignment](https://github.com/dongminleeai/Python-for-ML/tree/master/01.%20Pythonic%20Code/Assignment/1.%20Pythonic%20Code%20Lab) |
37 |
| - |
38 |
| - - [Pythonic Code Lab](https://github.com/dongminleeai/Python-for-ML/tree/master/01.%20Pythonic%20Code/Assignment/1.%20Pythonic%20Code%20Lab) |
39 |
| - |
40 |
| - - vector_size_check |
41 |
| - - vector_addition |
42 |
| - - vector_subtraction |
43 |
| - - scalar_vector_product |
44 |
| - - matrix_size_check |
45 |
| - - is_matrix_equal |
46 |
| - - matrix_addition |
47 |
| - - matrix_subtraction |
48 |
| - - matrix_transpose |
49 |
| - - scalar_matrix_product |
50 |
| - - is_product_availability_matrix |
51 |
| - - matrix_product |
| 7 | +## Installation |
52 | 8 |
|
53 |
| -<br> |
| 9 | +Clone the repository and run one of the following commands. |
54 | 10 |
|
55 |
| -### 02. [Data Handling](https://github.com/dongminleeai/Python-for-ML/tree/master/02.%20Data%20Handling) |
| 11 | +```shell |
| 12 | +$ make setup |
| 13 | +``` |
56 | 14 |
|
57 |
| -1. [Lecture](https://github.com/dongminleeai/Python-for-ML/tree/master/02.%20Data%20Handling/Lecture) |
58 |
| - |
59 |
| - - [Overview](https://github.com/dongminleeai/Python-for-ML/blob/master/02.%20Data%20Handling/Lecture/02-1.%20Overview.ipynb) |
60 |
| - |
61 |
| - - [Numpy](https://github.com/dongminleeai/Python-for-ML/blob/master/02.%20Data%20Handling/Lecture/02-2.%20Numpy.ipynb) |
62 |
| - - Numpy이란? |
63 |
| - - Numpy 특징 |
64 |
| - - Array creation |
65 |
| - - shape |
66 |
| - - dtype |
67 |
| - - Handling shape |
68 |
| - - reshape |
69 |
| - - flatten |
70 |
| - - Indexing & Sclicing |
71 |
| - - Creation function |
72 |
| - - arange |
73 |
| - - ones, zeros & empty |
74 |
| - - something_like |
75 |
| - - identity |
76 |
| - - eye |
77 |
| - - diag |
78 |
| - - random sampling |
79 |
| - - Operation functions |
80 |
| - - sum |
81 |
| - - axis |
82 |
| - - mean & std |
83 |
| - - Mathematical functions |
84 |
| - - concatenate |
85 |
| - - Array operations |
86 |
| - - Operations b/t arrays |
87 |
| - - Element-wise operations |
88 |
| - - Dot product |
89 |
| - - transpose |
90 |
| - - broadcasting |
91 |
| - - Numpy performance |
92 |
| - - Comparisons |
93 |
| - - All & Any |
94 |
| - - Comparison operation |
95 |
| - - np.where |
96 |
| - - argmax & argmin |
97 |
| - - Boolean & Fancy index |
98 |
| - - boolean index |
99 |
| - - fancy index |
100 |
| - - Numpy data i/o |
101 |
| - - loadtxt & savetxt |
102 |
| - - numpy object - npy |
103 |
| - |
104 |
| - - [Pandas](https://github.com/dongminleeai/Python-for-ML/blob/master/02.%20Data%20Handling/Lecture/02-3.%20Pandas.ipynb) |
105 |
| - - Pandas란? |
106 |
| - - 데이터 로딩 |
107 |
| - - Pandas의 구성 |
108 |
| - - Series |
109 |
| - - Dataframe |
110 |
| - - Selection & Drop |
111 |
| - - Selection with column names |
112 |
| - - Selection with index number |
113 |
| - - Series selection |
114 |
| - - Index 변경 |
115 |
| - - Basic, loc, iloc selection |
116 |
| - - index 재설정 |
117 |
| - - Data drop |
118 |
| - - Dataframe Operations |
119 |
| - - Series operation |
120 |
| - - Dataframe operation |
121 |
| - - Series + Dataframe |
122 |
| - - Lambda, Map, Apply |
123 |
| - - Map for series |
124 |
| - - Replace function |
125 |
| - - Apply for dataframe |
126 |
| - - Applymap for dataframe |
127 |
| - - Pandas Built-in functions |
128 |
| - - describe |
129 |
| - - unique |
130 |
| - - label str -> index 값으로 변환 |
131 |
| - - sum |
132 |
| - - isnull |
133 |
| - - sort_values |
134 |
| - - Groupby |
135 |
| - - Groupby 사용법 |
136 |
| - - Hierarchical index |
137 |
| - - unstack() |
138 |
| - - swaplevel() |
139 |
| - - gropued |
140 |
| - - aggregation |
141 |
| - - transformation |
142 |
| - - filter |
143 |
| - - Case study (phone_data.csv) |
144 |
| - - Pivot table & Crosstab |
145 |
| - - Merge & Concat |
146 |
| - - Merge |
147 |
| - - Inner join |
148 |
| - - Left join |
149 |
| - - Right join |
150 |
| - - Full(outer) join |
151 |
| - - Concat |
152 |
| - - Persistence |
153 |
| - - DB persistence |
154 |
| - - XLS persistence |
155 |
| - - Pickle persistence |
156 |
| - |
157 |
| - - [Matplotlib](https://github.com/dongminleeai/Python-for-ML/blob/master/02.%20Data%20Handling/Lecture/02-4.%20Matplotlib.ipynb) |
158 |
| - - Matplotlib란? |
159 |
| - - 기본 사용법 |
160 |
| - - Matplotlib |
161 |
| - - Set color |
162 |
| - - Set linstyle |
163 |
| - - Set title |
164 |
| - - Set legend |
165 |
| - - Set grid & xylim |
166 |
| - - Matplotlib Graph |
167 |
| - - Scatter |
168 |
| - - Bar chart |
169 |
| - - Histogram |
170 |
| - - Boxplot |
171 |
| - - Matplotlib with pandas |
172 |
| - |
173 |
| - - [Data Cleaning](https://github.com/dongminleeai/Python-for-ML/blob/master/02.%20Data%20Handling/Lecture/02-5.%20Data%20Cleansing.ipynb) |
174 |
| - - Data problems |
175 |
| - - Data quality problems |
176 |
| - - Data preprocessing issues |
177 |
| - - Missing Values |
178 |
| - - 데이터가 없을 때 할 수 있는 전략 |
179 |
| - - Data drop |
180 |
| - - Data Fill |
181 |
| - - Category data |
182 |
| - - One Hot Encoding |
183 |
| - - Data binning |
184 |
| - - Feature scaling |
185 |
| - - Min-Max Normalization |
186 |
| - - Z-Score Normalization |
187 |
| - |
188 |
| - - [Kaggle - Titanic](https://github.com/dongminleeai/Python-for-ML/blob/master/02.%20Data%20Handling/Lecture/02-6.%20Kaggle%20-%20Titanic.ipynb) |
189 |
| - - Titanic이란? |
190 |
| - - Load dataset |
191 |
| - - Data preproecessing |
192 |
| - - Check null values |
193 |
| - - Drop Columns |
194 |
| - - Add to null values |
195 |
| - - One-Hot Encoding Columns |
196 |
| - - Build Model |
197 |
| - |
198 |
| -2. [Assignment](https://github.com/dongminleeai/Python-for-ML/tree/master/02.%20Data%20Handling/Assignment) |
| 15 | +## Contents |
199 | 16 |
|
200 |
| - - [Numpy Lab](https://github.com/dongminleeai/Python-for-ML/tree/master/02.%20Data%20Handling/Assignment/1.%20Numpy%20Lab) |
| 17 | +If you want to see jupyter notebook files better, please see them in [nbviewer](https://nbviewer.org/github/dongminlee94/Python-for-ML). |
201 | 18 |
|
202 |
| - - n_size_ndarray_creation |
203 |
| - - zero_or_one_or_empty_ndarray |
204 |
| - - change_shape_of_ndarray |
205 |
| - - concat_ndarray |
206 |
| - - normalize_ndarray |
207 |
| - - save_ndarray |
208 |
| - - boolean_index |
209 |
| - - find_nearest_value |
210 |
| - - get_n_largest_values |
| 19 | +1. [Pythonic code]() |
| 20 | +2. [News categorization]() |
| 21 | +3. [Overview]() |
| 22 | +4. [Numpy]() |
| 23 | +5. [Pandas]() |
| 24 | +6. [Matplotlib]() |
| 25 | +7. [Data cleansing]() |
| 26 | +8. [Kaggle - Titanic]() |
0 commit comments