|
| 1 | +# Implements the Chirp Z-Transform and its inverse, as described in |
| 2 | +# V. Sukhoy and A. Stoytchev, Generalizing the inverse FFT off the unit |
| 3 | +# circle. Sci Rep 9, 14443 (2019). |
| 4 | +# https://doi.org/10.1038/s41598-019-50234-9 |
| 5 | +# (While a fast algorithm for the Chirp Z-Transform has been known for 50 years, |
| 6 | +# a fast algorithm for the inverse was only recently discovered (By Sukhoy and |
| 7 | +# Stoychev). |
| 8 | + |
| 9 | +import numpy as np |
| 10 | +import scipy.fftpack |
| 11 | + |
| 12 | +def circulant_multiply(c, x): |
| 13 | + # Compute the product y = Gx of a circulant matrix G and a vector x, where G is generated by its first column |
| 14 | + # c = (c[0], c[1], ..., c[n-1]). |
| 15 | + if len(x) != len(c): |
| 16 | + raise Exception("should have len(x) equal to len(c), but instead len(x) = %d, len(c) = %d" % (len(x), len(c))) |
| 17 | + |
| 18 | + return scipy.fftpack.ifft( scipy.fftpack.fft(c) * scipy.fftpack.fft(x) ) |
| 19 | + |
| 20 | +def toeplitz_multiply_e(r, c, x): |
| 21 | + # Compute the product y = Tx of a Toeplitz matrix T and a vector x, where T is specified by its first row |
| 22 | + # r = (r[0], r[1], r[2], ..., r[N-1]) |
| 23 | + # and its first column |
| 24 | + # c = (c[0], c[1], c[2], ..., c[M-1]), |
| 25 | + # where r[0] = c[0]. |
| 26 | + N = len(r) |
| 27 | + M = len(c) |
| 28 | + |
| 29 | + if r[0] != c[0]: |
| 30 | + raise Exception("should have r[0] == c[0], but r[0] = %f and c[0] = %f" % (r[0], c[0])) |
| 31 | + if len(x) != len(r): |
| 32 | + raise Exception("should have len(x) equal to len(r), but instead len(x) = %d, len(r) = %d" % (len(x), len(r))) |
| 33 | + |
| 34 | + n = (2 ** np.ceil(np.log2(M+N-1))).astype(np.int64) |
| 35 | + |
| 36 | + # Form an array C by concatenating c, n - (M + N - 1) zeros, and the reverse of the last N-1 elements of r, ie. |
| 37 | + # C = (c[0], c[1], ..., c[M-1], 0,..., 0, r[N-1], ..., r[2], r[1]). |
| 38 | + C = np.concatenate(( np.pad(c, (0, n - (M + N - 1)), 'constant'), np.flip(r[1:]) )) |
| 39 | + |
| 40 | + X = np.pad(x, (0, n-N), 'constant') |
| 41 | + Y = circulant_multiply(C, X) |
| 42 | + |
| 43 | + # The result is the first M elements of C * X. |
| 44 | + return Y[:M] |
| 45 | + |
| 46 | +def czt(x, M, W, A): |
| 47 | + # Computes the Chirp Z-transform of a vector x. |
| 48 | + # |
| 49 | + # To recover a Fourier transform, take |
| 50 | + # M = len(x), W = exp(2pi/M * i), A = 1. |
| 51 | + N = len(x) |
| 52 | + X = np.empty(N) * 1.0j |
| 53 | + r = np.empty(N) * 1.0j |
| 54 | + c = np.empty(M) * 1.0j |
| 55 | + |
| 56 | + for k in range(N): |
| 57 | + X[k] = np.power(W, k**2/2.0) * np.power(A*1.0, -k) * x[k] |
| 58 | + r[k] = np.power(W, -k**2/2.0) |
| 59 | + |
| 60 | + for k in range(M): |
| 61 | + c[k] = np.power(W, -k**2/2) |
| 62 | + |
| 63 | + X = toeplitz_multiply_e(r, c, X) # len(X) == M |
| 64 | + for k in range(M): |
| 65 | + X[k] = np.power(W, k**2/2) * X[k] |
| 66 | + return X |
| 67 | + |
| 68 | +def iczt(X, N, W, A): |
| 69 | + # Compute the inverse Chirp Z-transform of a vector X. |
| 70 | + M = len(X) |
| 71 | + if M != N: |
| 72 | + raise Exception("should have len(X) equal to N, but instead len(X) = %d, N = %d" % (len(X), N)) |
| 73 | + |
| 74 | + n = N |
| 75 | + x = np.empty(n) * 1.0j |
| 76 | + for k in range(n): |
| 77 | + x[k] = np.power(W, -k**2/2) * X[k] |
| 78 | + |
| 79 | + p = np.empty(n) * 1.0j |
| 80 | + p[0] = 1 |
| 81 | + for k in range(1, n): |
| 82 | + p[k] = p[k-1] * (np.power(W, k)-1) |
| 83 | + |
| 84 | + u = np.empty(n) * 1.0j |
| 85 | + for k in range(n): |
| 86 | + u[k] = (-1)**k * ( np.power(W, 0.5 * (2*k**2 - (2*n-1)*k + n*(n-1))) / (p[n - k - 1] * p[k]) ) |
| 87 | + |
| 88 | + z = np.zeros(n) |
| 89 | + uhat = np.pad(np.flip(u[1:]), (1, 0), 'constant') |
| 90 | + util = np.pad(u[:1], (0, n-1), 'constant') |
| 91 | + |
| 92 | + xp = toeplitz_multiply_e(z, uhat, toeplitz_multiply_e(uhat, z, x)) |
| 93 | + xpp = toeplitz_multiply_e(util, u, toeplitz_multiply_e(u, util, x)) |
| 94 | + |
| 95 | + for k in range(n): |
| 96 | + x[k] = (xpp[k] - xp[k]) / u[0] |
| 97 | + |
| 98 | + for k in range(n): |
| 99 | + x[k] = np.power(A, k) * np.power(W, -k**2/2) * x[k] |
| 100 | + |
| 101 | + return x |
0 commit comments