-
Notifications
You must be signed in to change notification settings - Fork 407
/
Copy pathgray_sort_benchmark.py
364 lines (325 loc) · 14.9 KB
/
gray_sort_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import functools
import logging
import os.path
import shutil
import subprocess
import tempfile
from pathlib import PurePath
from typing import Iterable, List
import duckdb
import polars
import psutil
import pyarrow as arrow
import pyarrow.compute as pc
from smallpond.common import GB, MB, next_power_of_two, pytest_running
from smallpond.execution.driver import Driver
from smallpond.execution.task import (
ArrowStreamTask,
PythonScriptTask,
RuntimeContext,
StreamOutput,
)
from smallpond.logical.dataset import ArrowTableDataSet, DataSet, ParquetDataSet
from smallpond.logical.node import (
ArrowStreamNode,
Context,
DataSetPartitionNode,
DataSourceNode,
LogicalPlan,
ProjectionNode,
PythonScriptNode,
ShuffleNode,
)
class SortBenchTool(object):
gensort_path = shutil.which("gensort")
valsort_path = shutil.which("valsort")
@staticmethod
def ensure_installed():
if not SortBenchTool.gensort_path or not SortBenchTool.valsort_path:
raise Exception("gensort or valsort not found")
def generate_records(
runtime_ctx: RuntimeContext,
input_readers: List[arrow.RecordBatchReader],
record_nbytes=100,
key_nbytes=10,
bucket_nbits=12,
gensort_batch_nbytes=500 * MB,
) -> Iterable[arrow.Table]:
runtime_task: ArrowStreamTask = runtime_ctx.task
batch_size = gensort_batch_nbytes // record_nbytes
schema = arrow.schema(
[
arrow.field("buckets", arrow.uint16()),
arrow.field("keys", arrow.binary()),
arrow.field("records", arrow.binary()),
]
)
with tempfile.NamedTemporaryFile(dir="/dev/shm", buffering=0) as shm_file:
for batch_idx, batch in enumerate(input_readers[0]):
for begin_at, num_records in zip(*batch.columns):
begin_at, num_records = begin_at.as_py(), num_records.as_py()
for offset in range(begin_at, begin_at + num_records, batch_size):
record_count = min(batch_size, begin_at + num_records - offset)
gensort_cmd = f"{SortBenchTool.gensort_path} -t2 -b{offset} {record_count} {shm_file.name},buf,trans=100m"
subprocess.run(gensort_cmd.split()).check_returncode()
runtime_task.add_elapsed_time("generate records (secs)")
shm_file.seek(0)
buffer = arrow.py_buffer(shm_file.read(record_count * record_nbytes))
runtime_task.add_elapsed_time("read records (secs)")
# https://arrow.apache.org/docs/format/Columnar.html#fixed-size-primitive-layout
records = arrow.Array.from_buffers(arrow.binary(record_nbytes), record_count, [None, buffer])
keys = pc.binary_slice(records, 0, key_nbytes)
# get first 2 bytes and convert to big-endian uint16
binary_prefix = pc.binary_slice(records, 0, 2).cast(arrow.binary())
reversed_prefix = pc.binary_reverse(binary_prefix).cast(arrow.binary(2))
uint16_prefix = reversed_prefix.view(arrow.uint16())
buckets = pc.shift_right(uint16_prefix, 16 - bucket_nbits)
runtime_task.add_elapsed_time("build arrow table (secs)")
yield arrow.Table.from_arrays([buckets, keys, records], schema=schema)
yield StreamOutput(
schema.empty_table(),
batch_indices=[batch_idx],
force_checkpoint=pytest_running(),
)
def sort_records(
runtime_ctx: RuntimeContext,
input_datasets: List[DataSet],
output_path: str,
sort_engine="polars",
write_io_nbytes=500 * MB,
) -> bool:
runtime_task: PythonScriptTask = runtime_ctx.task
data_file_path = os.path.join(runtime_task.runtime_output_abspath, f"{runtime_task.output_filename}.dat")
if sort_engine == "polars":
input_data = polars.read_parquet(
input_datasets[0].resolved_paths,
rechunk=False,
hive_partitioning=False,
columns=input_datasets[0].columns,
)
runtime_task.perf_metrics["num input rows"] += len(input_data)
runtime_task.add_elapsed_time("input load time (secs)")
sorted_records = input_data.sort("keys").get_column("records")
runtime_task.add_elapsed_time("sort by keys (secs)")
record_arrays = [chunk.to_arrow() for chunk in sorted_records.get_chunks()]
runtime_task.add_elapsed_time("convert to chunks (secs)")
elif sort_engine == "arrow":
input_table = input_datasets[0].to_arrow_table(runtime_task.cpu_limit)
runtime_task.perf_metrics["num input rows"] += input_table.num_rows
runtime_task.add_elapsed_time("input load time (secs)")
sorted_table = input_table.sort_by("keys")
runtime_task.add_elapsed_time("sort by keys (secs)")
record_arrays = sorted_table.column("records").chunks
runtime_task.add_elapsed_time("convert to chunks (secs)")
elif sort_engine == "duckdb":
with duckdb.connect(database=":memory:", config={"allow_unsigned_extensions": "true"}) as conn:
runtime_task.prepare_connection(conn)
input_views = runtime_task.create_input_views(conn, input_datasets)
sql_query = "select records from {0} order by keys".format(*input_views)
sorted_table = conn.sql(sql_query).to_arrow_table()
runtime_task.add_elapsed_time("sort by keys (secs)")
record_arrays = sorted_table.column("records").chunks
runtime_task.add_elapsed_time("convert to chunks (secs)")
else:
raise Exception(f"unknown sort engine: {sort_engine}")
with open(data_file_path, "wb") as fout:
for record_array in record_arrays:
# https://arrow.apache.org/docs/format/Columnar.html#variable-size-binary-layout
validity_bitmap, offsets, values = record_array.buffers()
buffer_mem = memoryview(values)
total_write_nbytes = sum(
fout.write(buffer_mem[offset : offset + write_io_nbytes]) for offset in range(0, len(buffer_mem), write_io_nbytes)
)
assert total_write_nbytes == len(buffer_mem)
runtime_task.perf_metrics["num output rows"] += len(record_array)
runtime_task.add_elapsed_time("output dump time (secs)")
return True
def validate_records(runtime_ctx: RuntimeContext, input_datasets: List[DataSet], output_path: str) -> bool:
for data_path in input_datasets[0].resolved_paths:
summary_path = os.path.join(output_path, PurePath(data_path).with_suffix(".sum").name)
cmdstr = f"{SortBenchTool.valsort_path} -o {summary_path} {data_path},buf,trans=10m"
logging.debug(f"running command: {cmdstr}")
result = subprocess.run(cmdstr.split(), capture_output=True, encoding="utf8")
if result.stderr:
logging.info(f"valsort stderr: {result.stderr}")
if result.stdout:
logging.info(f"valsort stdout: {result.stdout}")
if result.returncode != 0:
return False
return True
def validate_summary(runtime_ctx: RuntimeContext, input_datasets: List[DataSet], output_path: str) -> bool:
concated_summary_path = os.path.join(output_path, "merged.sum")
with open(concated_summary_path, "wb") as fout:
for path in input_datasets[0].resolved_paths:
with open(path, "rb") as fin:
fout.write(fin.read())
cmdstr = f"{SortBenchTool.valsort_path} -s {concated_summary_path}"
logging.debug(f"running command: {cmdstr}")
result = subprocess.run(cmdstr.split(), capture_output=True, encoding="utf8")
if result.stderr:
logging.info(f"valsort stderr: {result.stderr}")
if result.stdout:
logging.info(f"valsort stdout: {result.stdout}")
return result.returncode == 0
def generate_random_records(
ctx,
record_nbytes,
key_nbytes,
total_data_nbytes,
gensort_batch_nbytes,
num_data_partitions,
num_sort_partitions,
parquet_compression=None,
parquet_compression_level=None,
):
num_record_ranges = num_data_partitions * 10
total_num_records = total_data_nbytes // record_nbytes
record_range_size = (total_num_records + num_record_ranges - 1) // num_record_ranges
logging.warning(
f"{record_nbytes} bytes/record x total {total_num_records:,d} records = "
f"{total_data_nbytes/GB:.3f}GB / {num_record_ranges} record ranges = "
f"{record_range_size * record_nbytes/GB:.3f}GB ({record_range_size:,d} records) per record range"
)
range_begin_at = [pos for pos in range(0, total_num_records, record_range_size)]
range_num_records = [min(total_num_records, record_range_size * (range_idx + 1)) - begin_at for range_idx, begin_at in enumerate(range_begin_at)]
assert sum(range_num_records) == total_num_records
record_range = DataSourceNode(
ctx,
ArrowTableDataSet(arrow.Table.from_arrays([range_begin_at, range_num_records], names=["begin_at", "num_records"])),
)
record_range_partitions = DataSetPartitionNode(ctx, (record_range,), npartitions=num_data_partitions, partition_by_rows=True)
random_records = ArrowStreamNode(
ctx,
(record_range_partitions,),
process_func=functools.partial(
generate_records,
record_nbytes=record_nbytes,
key_nbytes=key_nbytes,
bucket_nbits=num_sort_partitions.bit_length() - 1,
gensort_batch_nbytes=gensort_batch_nbytes,
),
background_io_thread=True,
streaming_batch_size=10,
parquet_row_group_size=1024 * 1024,
parquet_compression=parquet_compression,
parquet_compression_level=parquet_compression_level,
output_name="random_records",
cpu_limit=2,
)
return random_records
def gray_sort_benchmark(
record_nbytes,
key_nbytes,
total_data_nbytes,
gensort_batch_nbytes,
num_data_partitions,
num_sort_partitions,
input_paths=None,
shuffle_engine="duckdb",
sort_engine="polars",
hive_partitioning=False,
validate_results=False,
shuffle_cpu_limit=32,
shuffle_memory_limit=None,
sort_cpu_limit=8,
sort_memory_limit=None,
parquet_compression=None,
parquet_compression_level=None,
**kwargs,
) -> LogicalPlan:
ctx = Context()
num_sort_partitions = next_power_of_two(num_sort_partitions)
if input_paths:
input_dataset = ParquetDataSet(input_paths)
input_nbytes = sum(os.path.getsize(p) for p in input_dataset.resolved_paths)
logging.warning(f"input data size: {input_nbytes/GB:.3f}GB, {input_dataset.num_files} files")
random_records = DataSourceNode(ctx, input_dataset)
else:
random_records = generate_random_records(
ctx,
record_nbytes,
key_nbytes,
total_data_nbytes,
gensort_batch_nbytes,
num_data_partitions,
num_sort_partitions,
parquet_compression,
parquet_compression_level,
)
partitioned_records = ShuffleNode(
ctx,
(random_records,),
npartitions=num_sort_partitions,
data_partition_column="buckets",
engine_type=shuffle_engine,
hive_partitioning=hive_partitioning,
parquet_row_group_size=10 * 1024 * 1024,
parquet_compression=parquet_compression,
parquet_compression_level=parquet_compression_level,
cpu_limit=shuffle_cpu_limit,
memory_limit=shuffle_memory_limit,
)
sorted_records = PythonScriptNode(
ctx,
(ProjectionNode(ctx, partitioned_records, ["keys", "records"]),),
process_func=functools.partial(sort_records, sort_engine=sort_engine),
output_name="sorted_records",
cpu_limit=sort_cpu_limit,
memory_limit=sort_memory_limit,
)
if validate_results:
partitioned_summaries = PythonScriptNode(
ctx,
(sorted_records,),
process_func=validate_records,
output_name="partitioned_summaries",
)
merged_summaries = DataSetPartitionNode(ctx, (partitioned_summaries,), npartitions=1)
final_check = PythonScriptNode(ctx, (merged_summaries,), process_func=validate_summary)
root = final_check
else:
root = sorted_records
return LogicalPlan(ctx, root)
def main():
SortBenchTool.ensure_installed()
driver = Driver()
driver.add_argument("-R", "--record_nbytes", type=int, default=100)
driver.add_argument("-K", "--key_nbytes", type=int, default=10)
driver.add_argument("-T", "--total_data_nbytes", type=int, default=None)
driver.add_argument("-B", "--gensort_batch_nbytes", type=int, default=512 * MB)
driver.add_argument("-n", "--num_data_partitions", type=int, default=None)
driver.add_argument("-t", "--num_sort_partitions", type=int, default=None)
driver.add_argument("-i", "--input_paths", nargs="+", default=[])
driver.add_argument("-e", "--shuffle_engine", default="duckdb", choices=("duckdb", "arrow"))
driver.add_argument("-s", "--sort_engine", default="duckdb", choices=("duckdb", "arrow", "polars"))
driver.add_argument("-H", "--hive_partitioning", action="store_true")
driver.add_argument("-V", "--validate_results", action="store_true")
driver.add_argument("-C", "--shuffle_cpu_limit", type=int, default=ShuffleNode.default_cpu_limit)
driver.add_argument(
"-M",
"--shuffle_memory_limit",
type=int,
default=ShuffleNode.default_memory_limit,
)
driver.add_argument("-TC", "--sort_cpu_limit", type=int, default=8)
driver.add_argument("-TM", "--sort_memory_limit", type=int, default=None)
driver.add_argument("-NC", "--cpus_per_node", type=int, default=psutil.cpu_count(logical=False))
driver.add_argument("-NM", "--memory_per_node", type=int, default=psutil.virtual_memory().total)
driver.add_argument("-CP", "--parquet_compression", default=None)
driver.add_argument("-LV", "--parquet_compression_level", type=int, default=None)
user_args, driver_args = driver.parse_arguments()
assert len(user_args.input_paths) == 0 or user_args.num_sort_partitions is not None
total_num_cpus = max(1, driver_args.num_executors) * user_args.cpus_per_node
memory_per_cpu = user_args.memory_per_node // user_args.cpus_per_node
user_args.sort_cpu_limit = 1 if user_args.sort_engine == "arrow" else user_args.sort_cpu_limit
sort_memory_limit = user_args.sort_memory_limit or user_args.sort_cpu_limit * memory_per_cpu
user_args.total_data_nbytes = user_args.total_data_nbytes or max(1, driver_args.num_executors) * user_args.memory_per_node
user_args.num_data_partitions = user_args.num_data_partitions or total_num_cpus // 2
user_args.num_sort_partitions = user_args.num_sort_partitions or max(
total_num_cpus // user_args.sort_cpu_limit,
user_args.total_data_nbytes // (sort_memory_limit // 4),
)
plan = gray_sort_benchmark(**vars(user_args))
driver.run(plan)
if __name__ == "__main__":
main()