Skip to content

Commit 7bab255

Browse files
committed
docs(REAMDE): 添加中英文README
1 parent 13e9832 commit 7bab255

File tree

2 files changed

+86
-29
lines changed

2 files changed

+86
-29
lines changed

README.md

Lines changed: 30 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,36 @@
11

22
![](./logo.png)
33

4-
# 基于numpy的深度学习库
4+
# Numpy-based deep learning library
55

6-
工程结构:
6+
[中文版本(Chinese version)]()
7+
8+
Convolutional neural network based on numpy, modular design guarantees easy implementation of the model, which is suitable for the introduction of junior researchers in deep learning.
9+
10+
*A PyTorch example is also included.*
11+
12+
## Features
13+
14+
Realized Network Model(Located on the pynet/models):
15+
16+
* 2-Layer Neural Network
17+
* 3-Layer Neural Network
18+
* LeNet-5
19+
* AlexNet
20+
* NIN
21+
22+
Realized Network Layer(Located on the pynet/nn):
23+
24+
* Convolution Layer (Conv2d)
25+
* Fully-Connection Layer (FC)
26+
* Max-Pooling layer (MaxPool)
27+
* ReLU Layer (ReLU)
28+
* Random Dropout Layer (Dropout/Dropout2d)
29+
* Softmax
30+
* Cross Entropy Loss
31+
* Gloabl Average Pool (GAP)
32+
33+
## Catalog
734

835
```
936
.
@@ -28,30 +55,4 @@
2855
│   ├── examples
2956
│   ├── models # 模型定义
3057
│   └── vision # 数据操作
31-
└── README.md
32-
33-
10 directories, 12 files
34-
```
35-
36-
当前实现内容:
37-
38-
1. 神经网络
39-
2. 卷积神经网络
40-
3. 动量加速和`Nesterov`加速
41-
4. 随机失活
42-
43-
实现网络:
44-
45-
1. 2层神经网络
46-
2. 3层神经网络
47-
3. LeNet-5
48-
4. AlexNet
49-
5. NIN
50-
51-
数据集操作:
52-
53-
1. `mnist`
54-
2. `cifar-10`
55-
3. `orl`
56-
4. `iris`
57-
5. `xor`
58+
```

README.zh-CN.md

Lines changed: 56 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,56 @@
1+
2+
![](./logo.png)
3+
4+
# 基于numpy的深度学习库
5+
6+
基于`numpy`实现的卷积神经网络,模块化设计保证模型的轻松实现,适用于深度学习初级研究人员的入门
7+
8+
*同时附带了PyTorch示例*
9+
10+
## 功能特性
11+
12+
已实现网络模型(位于`pynet/models`):
13+
14+
* 2层神经网络
15+
* 3层神经网络
16+
* LeNet-5
17+
* AlexNet
18+
* NIN
19+
20+
已实现网络层(位于`pynet/nn`):
21+
22+
* 卷积层
23+
* 全连接层
24+
* 最大池化层
25+
* ReLU
26+
* 随机失活
27+
* Softmax
28+
* 交叉熵损失
29+
* 全局平均池化层
30+
31+
## 工程结构
32+
33+
```
34+
.
35+
├── examples # pynet使用示例
36+
│   ├── 2_nn_xor.py
37+
│   ├── 3_nn_cifar10.py
38+
│   ├── 3_nn_iris.py
39+
│   ├── 3_nn_orl.py
40+
│   ├── lenet5_mnist.py
41+
│   ├── nin_cifar10.py
42+
│   └── nin_cifar10_pytorch.py
43+
├── plt # 绘图相关(待调整)
44+
│   ├── anneal_plt.py
45+
│   ├── lenet5_plt.py
46+
│   └── plt.py
47+
├── pynet # PyNet库
48+
│   ├── __init__.py
49+
│   ├── models # 模型定义
50+
│   ├── nn # 层定义
51+
│   └── vision # 数据操作
52+
├── pytorch # PyTorch使用示例
53+
│   ├── examples
54+
│   ├── models # 模型定义
55+
│   └── vision # 数据操作
56+
```

0 commit comments

Comments
 (0)