Skip to content

Latest commit

 

History

History
264 lines (205 loc) · 10.3 KB

File metadata and controls

264 lines (205 loc) · 10.3 KB

Network Anomaly Detection System

Python TensorFlow OMNeT++ INET License

Build Status Code Coverage Documentation


Enterprise-Grade Network Anomaly Detection System
Leveraging Machine Learning & OMNeT++ for Advanced Network Security


🎯 Overview

A cutting-edge network anomaly detection system that combines advanced machine learning algorithms with OMNeT++ simulation capabilities. Our system focuses on robust data collection and analysis, with a planned evolution towards real-time detection and dynamic adaptation capabilities.

System Architecture

graph TD
    A[Data Collection Layer] --> B[Preprocessing Engine]
    B --> C[Feature Extraction]
    C --> D[ML Pipeline]
    D --> E[Anomaly Detection]
    
    subgraph "Data Processing"
        B --> F[Data Cleaning]
        F --> G[Feature Engineering]
        G --> H[Data Validation]
    end
    
    subgraph "ML Components"
        D --> I[Model Training]
        I --> J[Model Validation]
        J --> K[Model Deployment]
    end
Loading
🌟 Key Features & Capabilities
Feature Current Status Future Goal Implementation Details
Data Collection ✅ Operational Enhanced real-time capabilities Custom packet capture, PCAP analysis, Traffic sampling
ML Processing ✅ Offline Analysis Real-time processing TensorFlow-based models, Scikit-learn pipelines
OMNeT++ Integration 🔄 Basic Setup Full real-time integration Custom modules, Network scenarios
Adaptation 📊 Static Models Dynamic network-agnostic models Transfer learning, Online adaptation
Visualization 📈 Basic Metrics Interactive real-time dashboards Grafana integration, Custom dashboards

🚀 Development Status

Current Implementation

  • ✅ Data Collection Framework
    • Network packet capture system
    • Protocol-specific preprocessing
    • Advanced feature extraction
    • Data validation pipeline
  • ✅ ML Model Implementation
    • Supervised learning models
    • Anomaly detection algorithms
    • Model validation framework
    • Performance monitoring
  • ✅ OMNeT++ Foundation
    • Network topology modeling
    • Traffic pattern simulation
    • Basic integration framework
    • Custom module development

Future Roadmap (2024)

  • 🎯 Enhanced Accuracy (Q1)
    • Deep learning integration
    • Feature selection optimization
    • Ensemble model implementation
    • Cross-validation framework
  • 🔄 Dynamic Adaptation (Q2)
    • Network-agnostic detection
    • Real-time model updates
    • Transfer learning capabilities
    • Adaptive thresholding
  • ⚡ Real-time Integration (Q3)
    • OMNeT++ real-time processing
    • Live traffic analysis
    • Interactive visualization
    • Performance optimization

Development Phases

Phase Status Deliverable Weight Documentation
Research Proposal Proposal Document 10% View
Simulation Tools Study Technical Report 10% View
Network Design Design Document 20% View
Simulation Experiments Results Report 20% View
Research Article IEEE Paper 20% View
Final Presentation Presentation 20% View

💡 Technical Implementation

Dynamic Adaptation Framework
class DynamicNetworkDetector:
    """
    Advanced network anomaly detection with dynamic adaptation capabilities.
    Supports real-time model updates and network-agnostic detection.
    """
    def __init__(self, config: Dict[str, Any]):
        self.base_model = self._initialize_model(config)
        self.network_profiles: Dict[str, NetworkProfile] = {}
        self.adaptation_metrics: List[AdaptationMetric] = []
        self.feature_extractors: Dict[str, FeatureExtractor] = {}

    async def adapt_to_network(self, network_type: str) -> bool:
        """
        Dynamically adjust model parameters based on network characteristics.
        
        Args:
            network_type: Type of network to adapt to
            
        Returns:
            bool: Success status of adaptation
        """
        try:
            profile = self.network_profiles.get(network_type)
            if not profile:
                profile = await self._create_network_profile(network_type)
            
            return await self._adapt_model_parameters(profile)
        except AdaptationError as e:
            logger.error(f"Adaptation failed: {e}")
            return False

    async def update_model_realtime(self, new_data: NetworkData) -> ModelUpdateResult:
        """
        Update model in real-time with streaming network data.
        
        Args:
            new_data: New network data for model update
            
        Returns:
            ModelUpdateResult: Results of model update
        """
        validation_result = await self._validate_data(new_data)
        if validation_result.is_valid:
            return await self._update_model(new_data)
        return ModelUpdateResult(success=False, error=validation_result.error)
OMNeT++ Integration
/**
 * Real-time anomaly detection module for OMNeT++
 * Supports live traffic analysis and model adaptation
 */
class RealTimeAnomalyDetector : public cSimpleModule {
protected:
    virtual void initialize() override;
    virtual void handleMessage(cMessage *msg) override;
    
private:
    // Core components
    std::unique_ptr<MLModel> anomalyModel;
    std::unique_ptr<DataProcessor> streamProcessor;
    
    // Configuration
    DetectorConfig config;
    
    // Performance monitoring
    Statistics stats;
    
    // Helper methods
    void processPacket(Packet *packet);
    void updateModel(const DataBatch& batch);
    void reportAnomaly(const AnomalyEvent& event);
};

📊 System Performance

Current Metrics

Metric Performance Details
Model Accuracy 95% Tested on standard network datasets
False Positive Rate <1% With current threshold settings
Data Processing Offline Batch processing of network data
Analysis Latency ~500ms Average processing time per batch
Supported Protocols TCP/IP, UDP Basic protocol analysis

Target Specifications

Metric Goal Timeline
Real-time Accuracy >98% Q2 2024
Processing Latency <100ms Q3 2024
Adaptation Time <1s Q2 2024
Network Coverage Universal Q4 2024
Protocol Support All major Q3 2024

Research Team


Batu Burgu

Javad Ibrahimli

Kerem Karadeniz
ID: 0402010098 ID: 040210932 ID: 0402110049

📫 Connect With Us

GitHub Issues GitHub Discussions