|
| 1 | +/* Hacker Blocks */ |
| 2 | +/* Title - Largest BST in a Binary Tree */ |
| 3 | +/* Created By - Akash Modak */ |
| 4 | +/* Date - 26/10/2020 */ |
| 5 | + |
| 6 | +// Given a Binary Tree, write a program that returns the size of the largest subtree which is also a Binary Search Tree (BST) |
| 7 | + |
| 8 | +// Input Format |
| 9 | +// The first line of input will contain an integer n. The next line will contain n integers denoting the the preorder traversal of the BT. The next line will contain n more integers denoting the inorder traversal of the BT. |
| 10 | + |
| 11 | +// Constraints |
| 12 | +// 2 ≤ N ≤ 10^3 |
| 13 | + |
| 14 | +// Output Format |
| 15 | +// A single integer denoting the size ( no of nodes in tree ) of largest BST in the given tree. |
| 16 | + |
| 17 | +// Sample Input |
| 18 | +// 4 |
| 19 | +// 60 65 50 70 |
| 20 | +// 50 65 60 70 |
| 21 | +// Sample Output |
| 22 | +// 2 |
| 23 | +// Explanation |
| 24 | +// The tree looks like |
| 25 | + |
| 26 | +// 60 |
| 27 | +// / \ |
| 28 | +// 65 70 |
| 29 | +// / |
| 30 | +// 50 |
| 31 | +// The largest BST subtree is |
| 32 | + |
| 33 | +// 65 |
| 34 | +// / |
| 35 | +// 50 |
| 36 | +// which has the size 2 i.e. it has 2 nodes in it. |
| 37 | + |
| 38 | +#include<bits/stdc++.h> |
| 39 | +using namespace std; |
| 40 | +class node{ |
| 41 | + public: |
| 42 | + int data; |
| 43 | + node* left,*right; |
| 44 | + node(int d){ |
| 45 | + data = d; |
| 46 | + left=right=NULL; |
| 47 | + } |
| 48 | +}; |
| 49 | +class NB{ |
| 50 | + public: |
| 51 | + int numOfNode,maxNode; |
| 52 | + bool BST; |
| 53 | +}; |
| 54 | +node * build(int in[],int pre[],int start,int end,int &preIndex){ |
| 55 | + if(start>end){ |
| 56 | + return NULL; |
| 57 | + } |
| 58 | + node * root = new node(pre[preIndex]); |
| 59 | + int i; |
| 60 | + for(i=start;i<=end;i++){ |
| 61 | + if(in[i]==pre[preIndex]) |
| 62 | + break; |
| 63 | + } |
| 64 | + preIndex++; |
| 65 | + root->left = build(in,pre,start,i-1,preIndex); |
| 66 | + root->right = build(in,pre,i+1,end,preIndex); |
| 67 | + return root; |
| 68 | +} |
| 69 | +bool checkBST(node* root,int minV=INT_MIN,int maxV = INT_MAX){ |
| 70 | + if(root==NULL) |
| 71 | + return true; |
| 72 | + |
| 73 | + if(root->data>=minV && root->data<=maxV && checkBST(root->left,minV,root->data) && checkBST(root->right,root->data,maxV)) |
| 74 | + return true; |
| 75 | + return false; |
| 76 | +} |
| 77 | +int num(node* root){ |
| 78 | + |
| 79 | + if(root==NULL) |
| 80 | + return 0; |
| 81 | + int l = num(root->left); |
| 82 | + int r = num(root->right); |
| 83 | + return l+r+1; |
| 84 | +} |
| 85 | +NB longestBST(node* root){ |
| 86 | + NB temp; |
| 87 | + if(root==NULL){ |
| 88 | + temp.numOfNode = 0; |
| 89 | + temp.BST = true; |
| 90 | + temp.maxNode = 0; |
| 91 | + return temp; |
| 92 | + } |
| 93 | + |
| 94 | + NB left = longestBST(root->left); |
| 95 | + NB right = longestBST(root->right); |
| 96 | + |
| 97 | + if(left.BST and right.BST and checkBST(root)){ |
| 98 | + temp.BST = true; |
| 99 | + temp.numOfNode = num(root); |
| 100 | + // temp.maxNode = max(temp.numOfNode,max(left.maxNode,right.maxNode)); |
| 101 | + // cout<<left.numOfNode<<" "<<right.numOfNode<<" "<<num(root)<<" "<<temp.maxNode<<endl; |
| 102 | + } |
| 103 | + else{ |
| 104 | + temp.BST =false; |
| 105 | + temp.numOfNode = 0; |
| 106 | + // temp.maxNode = 0; |
| 107 | + } |
| 108 | + temp.maxNode = max(temp.numOfNode,max(left.maxNode,right.maxNode)); |
| 109 | + return temp; |
| 110 | +} |
| 111 | +int main() { |
| 112 | + int n; |
| 113 | + cin>>n; |
| 114 | + int pre[n],in[n]; |
| 115 | + for(int i=0;i<n;i++) |
| 116 | + cin>>pre[i]; |
| 117 | + for(int i=0;i<n;i++) |
| 118 | + cin>>in[i]; |
| 119 | + int p = 0; |
| 120 | + node* root = build(in,pre,0,n-1,p); |
| 121 | + NB temp = longestBST(root); |
| 122 | + // inorder(root);cout<<endl; |
| 123 | + // cout<<num(root)<<endl; |
| 124 | + cout<<temp.maxNode<<endl; |
| 125 | + return 0; |
| 126 | +} |
0 commit comments