|
| 1 | +/** |
| 2 | + * Dijkstra's Shortest Path Algorithm |
| 3 | + * Dijkstra's algorithm is greedy! That can cause problems! |
| 4 | + * |
| 5 | + * |
| 6 | + * Time Complexity: Time Complexity of Dijkstra's Algorithm is O ( V 2 ) |
| 7 | + * but with min-priority queue it drops down to O ( V + E log V ) |
| 8 | + * |
| 9 | + * @author Aditya Hajare <https://github.com/aditya43> |
| 10 | + * |
| 11 | + * IMPORTANT POINTS AND PSUDOCODE |
| 12 | + * ----------------------------------- |
| 13 | + * 1. This function should accept a starting and ending vertex |
| 14 | + * 2. Create an object (we'll call it distances) and set each key to be every |
| 15 | + * vertex in the adjacency list with a value of infinity, except for the |
| 16 | + * starting vertex which should have a value of 0. |
| 17 | + * 3. After setting a value in the distances object, add each vertex with |
| 18 | + * a priority of Infinity to the priority queue, except the starting vertex, |
| 19 | + * which should have a priority of 0 because that's where we begin. |
| 20 | + * 4. Create another object called previous and set each key to be every |
| 21 | + * vertex in the adjacency list with a value of null |
| 22 | + * 5. Start looping as long as there is anything in the priority queue |
| 23 | + * - dequeue a vertex from the priority queue |
| 24 | + * - If that vertex is the same as the ending vertex - we are done! |
| 25 | + * - Otherwise loop through each value in the adjacency list at that vertex |
| 26 | + * - Calculate the distance to that vertex from the starting vertex |
| 27 | + * - if the distance is less than what is currently stored in our |
| 28 | + * distances object |
| 29 | + * - update the distances object with new lower distance |
| 30 | + * - update the previous object to contain that vertex |
| 31 | + * - enqueue the vertex with the total distance from the start node |
| 32 | + * |
| 33 | + * We can improve this algorithm by adding a heuristics (a best guess) |
| 34 | + */ |
| 35 | +class Vertex { |
| 36 | + constructor (vertex, weight) { |
| 37 | + this.node = vertex; |
| 38 | + this.weight = weight; |
| 39 | + } |
| 40 | +} |
| 41 | + |
| 42 | +class Node { |
| 43 | + constructor (val, priority) { |
| 44 | + this.val = val; |
| 45 | + this.priority = priority; |
| 46 | + } |
| 47 | +} |
| 48 | + |
| 49 | +class PriorityQueue { |
| 50 | + constructor () { |
| 51 | + this.values = []; |
| 52 | + } |
| 53 | + |
| 54 | + enqueue (val, priority) { |
| 55 | + const node = new Node(val, priority); |
| 56 | + this.values.push(node); |
| 57 | + this.bubbleUp(); |
| 58 | + } |
| 59 | + |
| 60 | + dequeue () { |
| 61 | + const min = this.values[0]; |
| 62 | + const end = this.values.pop(); |
| 63 | + |
| 64 | + if (this.values.length > 0) { |
| 65 | + this.values[0] = end; |
| 66 | + this.bubbleDown(0); |
| 67 | + } |
| 68 | + |
| 69 | + return min; |
| 70 | + } |
| 71 | + |
| 72 | + bubbleUp () { |
| 73 | + let idx = this.values.length - 1; |
| 74 | + |
| 75 | + while (idx > 0) { |
| 76 | + const parentIdx = Math.floor((idx - 1) / 2); |
| 77 | + |
| 78 | + if (this.values[idx].priority >= this.values[parentIdx].priority) { |
| 79 | + break; |
| 80 | + } |
| 81 | + |
| 82 | + const tmp = this.values[parentIdx]; |
| 83 | + this.values[parentIdx] = this.values[idx]; |
| 84 | + this.values[idx] = tmp; |
| 85 | + |
| 86 | + idx = parentIdx; |
| 87 | + } |
| 88 | + } |
| 89 | + |
| 90 | + // Recursive |
| 91 | + bubbleDown (index) { |
| 92 | + const length = this.values.length; |
| 93 | + let largest = index; |
| 94 | + |
| 95 | + const left = 2 * index + 1; |
| 96 | + const right = 2 * index + 2; |
| 97 | + |
| 98 | + // if left child is greater than parent |
| 99 | + if (left <= length && this.values[left]) { |
| 100 | + if (this.values[left].priority < this.values[largest].priority) { |
| 101 | + largest = left; |
| 102 | + } |
| 103 | + } |
| 104 | + |
| 105 | + // if right child is greater than parent |
| 106 | + if (right <= length && this.values[right]) { |
| 107 | + if (this.values[right].priority < this.values[largest].priority) { |
| 108 | + largest = right; |
| 109 | + } |
| 110 | + } |
| 111 | + |
| 112 | + // swap |
| 113 | + if (largest !== index) { |
| 114 | + [this.values[largest], this.values[index]] = [this.values[index], this.values[largest]]; |
| 115 | + this.bubbleDown(largest); |
| 116 | + } |
| 117 | + } |
| 118 | + |
| 119 | + // Iterative |
| 120 | + bubbleDownIterative () { |
| 121 | + let idx = 0; |
| 122 | + const length = this.values.length; |
| 123 | + const element = this.values[0]; |
| 124 | + while (true) { |
| 125 | + const leftChildIdx = 2 * idx + 1; |
| 126 | + const rightChildIdx = 2 * idx + 2; |
| 127 | + let leftChild, rightChild; |
| 128 | + let swap = null; |
| 129 | + |
| 130 | + if (leftChildIdx < length) { |
| 131 | + leftChild = this.values[leftChildIdx]; |
| 132 | + if (leftChild.priority > element.priority) { |
| 133 | + swap = leftChildIdx; |
| 134 | + } |
| 135 | + } |
| 136 | + if (rightChildIdx < length) { |
| 137 | + rightChild = this.values[rightChildIdx]; |
| 138 | + if ( |
| 139 | + (swap === null && rightChild.priority > element.priority) || |
| 140 | + (swap !== null && rightChild.priority > leftChild.priority) |
| 141 | + ) { |
| 142 | + swap = rightChildIdx; |
| 143 | + } |
| 144 | + } |
| 145 | + if (swap === null) break; |
| 146 | + this.values[idx] = this.values[swap]; |
| 147 | + this.values[swap] = element; |
| 148 | + idx = swap; |
| 149 | + } |
| 150 | + } |
| 151 | +} |
| 152 | + |
| 153 | +class WeightedGraph { |
| 154 | + constructor () { |
| 155 | + this.adjacencyList = {}; |
| 156 | + } |
| 157 | + |
| 158 | + addVertex (vertex) { |
| 159 | + if (!this.adjacencyList[vertex]) { |
| 160 | + this.adjacencyList[vertex] = []; |
| 161 | + } |
| 162 | + } |
| 163 | + |
| 164 | + addEdge (vertex1, vertex2, weight) { |
| 165 | + this.adjacencyList[vertex1].push(new Vertex(vertex2, weight)); |
| 166 | + this.adjacencyList[vertex2].push(new Vertex(vertex1, weight)); |
| 167 | + } |
| 168 | + |
| 169 | + Dijkstra (start, finish) { |
| 170 | + const nodes = new PriorityQueue(); |
| 171 | + const distances = {}; |
| 172 | + const previous = {}; |
| 173 | + const paths = []; // to return at end |
| 174 | + let smallest; |
| 175 | + // build up initial state |
| 176 | + for (const vertex in this.adjacencyList) { |
| 177 | + if (vertex === start) { |
| 178 | + distances[vertex] = 0; |
| 179 | + nodes.enqueue(vertex, 0); |
| 180 | + } else { |
| 181 | + distances[vertex] = Infinity; |
| 182 | + nodes.enqueue(vertex, Infinity); |
| 183 | + } |
| 184 | + previous[vertex] = null; |
| 185 | + } |
| 186 | + // as long as there is something to visit |
| 187 | + while (nodes.values.length) { |
| 188 | + smallest = nodes.dequeue().val; |
| 189 | + if (smallest === finish) { |
| 190 | + // WE ARE DONE |
| 191 | + // BUILD UP PATH TO RETURN AT END |
| 192 | + while (previous[smallest]) { |
| 193 | + paths.push({ weight: distances[smallest], node: smallest }); |
| 194 | + smallest = previous[smallest]; |
| 195 | + } |
| 196 | + break; |
| 197 | + } |
| 198 | + if (smallest || distances[smallest] !== Infinity) { |
| 199 | + for (const neighbor in this.adjacencyList[smallest]) { |
| 200 | + // find neighboring node |
| 201 | + const nextNode = this.adjacencyList[smallest][neighbor]; |
| 202 | + // calculate new distance to neighboring node |
| 203 | + const candidate = distances[smallest] + nextNode.weight; |
| 204 | + const nextNeighbor = nextNode.node; |
| 205 | + if (candidate < distances[nextNeighbor]) { |
| 206 | + // updating new smallest distance to neighbor |
| 207 | + distances[nextNeighbor] = candidate; |
| 208 | + // updating previous - How we got to neighbor |
| 209 | + previous[nextNeighbor] = smallest; |
| 210 | + // enqueue in priority queue with new priority |
| 211 | + nodes.enqueue(nextNeighbor, candidate); |
| 212 | + } |
| 213 | + } |
| 214 | + } |
| 215 | + } |
| 216 | + // return paths.concat({ weight: distances[smallest], node: smallest }).reverse(); |
| 217 | + paths.push({ weight: distances[smallest], node: smallest }); |
| 218 | + |
| 219 | + let path = ''; |
| 220 | + let distance = 0; |
| 221 | + |
| 222 | + for (let i = paths.length - 1; i >= 0; i--) { |
| 223 | + path += paths[i].node + `(${paths[i].weight})`; |
| 224 | + distance += paths[i].weight; |
| 225 | + |
| 226 | + if (i > 0) { |
| 227 | + path += ' -> '; |
| 228 | + } |
| 229 | + } |
| 230 | + |
| 231 | + return { |
| 232 | + path, |
| 233 | + distance |
| 234 | + }; |
| 235 | + } |
| 236 | +} |
| 237 | + |
| 238 | +const graph = new WeightedGraph(); |
| 239 | + |
| 240 | +graph.addVertex('A'); |
| 241 | +graph.addVertex('B'); |
| 242 | +graph.addVertex('C'); |
| 243 | +graph.addVertex('D'); |
| 244 | +graph.addVertex('E'); |
| 245 | +graph.addVertex('F'); |
| 246 | + |
| 247 | +graph.addEdge('A', 'B', 4); |
| 248 | +graph.addEdge('A', 'C', 2); |
| 249 | +graph.addEdge('B', 'E', 3); |
| 250 | +graph.addEdge('C', 'D', 2); |
| 251 | +graph.addEdge('C', 'F', 4); |
| 252 | +graph.addEdge('D', 'E', 3); |
| 253 | +graph.addEdge('D', 'F', 1); |
| 254 | +graph.addEdge('E', 'F', 1); |
| 255 | + |
| 256 | +console.log(graph.Dijkstra('A', 'E')); |
0 commit comments