-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel_final.py
599 lines (524 loc) · 29.9 KB
/
model_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
# -*— coding: utf-8 -*-
""" Finetuning the library models for chip2019 question pairs matching. """
import argparse
import glob
import logging
import os
import random
import shutil
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset)
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from pytorch_transformers import (WEIGHTS_NAME, BertConfig, BertModel, BertTokenizer)
from pytorch_transformers import AdamW, WarmupLinearSchedule
from pytorch_transformers.modeling_bert import BertPreTrainedModel
from data_utils import (compute_metrics, convert_examples_to_features, QPMProcessor)
logger = logging.getLogger(__name__)
class CustomizedBert(BertPreTrainedModel):
def __init__(self, config):
super(CustomizedBert, self).__init__(config)
self.num_labels = 2
self.num_categories = 5
self.num_features = 10
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier1 = nn.Linear(config.hidden_size + self.num_features, self.num_labels)
self.classifier2 = nn.Linear(config.hidden_size, self.num_categories)
self.features_bn = nn.BatchNorm1d(self.num_features)
self.features_dense = nn.Linear(self.num_features, self.num_features)
self.init_weights()
def forward(self, input_ids, ct_clf_input_ids, token_type_ids=None, attention_mask=None, position_ids=None, labels=None,
ct_clf_token_type_ids=None, ct_clf_attention_mask=None, ct_clf_position_ids=None, categories=None,
head_mask=None, hand_features=None):
outputs1 = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
attention_mask=attention_mask, head_mask=head_mask)
outputs2 = self.bert(ct_clf_input_ids, position_ids=ct_clf_position_ids, token_type_ids=ct_clf_token_type_ids,
attention_mask=ct_clf_attention_mask, head_mask=head_mask)
pooled_output1 = outputs1[1]
pooled_output2 = outputs2[1]
hand_features = hand_features.float()
hand_features = self.features_dense(self.features_bn(hand_features))
pooled_output1 = torch.cat((pooled_output1, hand_features), dim=1)
pooled_output1 = self.dropout(pooled_output1)
pooled_output2 = self.dropout(pooled_output2)
logits1 = self.classifier1(pooled_output1)
logits2 = self.classifier2(pooled_output2)
outputs1 = (logits1,) + outputs1[2:] # add hidden states and attention if they are here
outputs2 = (logits2,) + outputs2[2:]
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits1.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits1.view(-1, self.num_labels), labels.view(-1))
outputs1 = (loss,) + outputs1
if categories is not None:
if self.num_categories == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits2.view(-1), categories.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits2.view(-1, self.num_categories), categories.view(-1))
outputs2 = (loss,) + outputs2
return outputs1, outputs2 # (loss), logits, (hidden_states), (attentions)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer):
""" Train the model. """
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError('Please install apex from https://www.github.com/nvidia/apex to use fp16 training.')
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Train!
logger.info('***** Running training *****')
logger.info(' Num examples = %d', len(train_dataset))
logger.info(' Num Epochs = %d', args.num_train_epochs)
logger.info(' Instantaneous batch size per GPU = %d', args.per_gpu_train_batch_size)
logger.info(' Total train batch size (w. parallel & accumulation) = %d',
args.train_batch_size * args.gradient_accumulation_steps)
logger.info(' Gradient Accumulation steps = %d', args.gradient_accumulation_steps)
logger.info(' Total optimization steps = %d', t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc='Epoch')
set_seed(args) # Added here for reproductibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc='Iteration')
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2],
'labels': batch[3],
'ct_clf_input_ids': batch[4],
'ct_clf_attention_mask': batch[5],
'ct_clf_token_type_ids': batch[6],
'categories': batch[7],
'hand_features': batch[8]}
outputs = model(**inputs)
loss, clf_loss = outputs[0][0], outputs[1][0] # model outputs are always tuple in pytorch_transformers (see doc)
total_loss = loss + clf_loss
if args.n_gpu > 1:
total_loss = total_loss.mean()
if args.gradient_accumulation_steps > 1:
total_loss = total_loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_los(total_loss.optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
total_loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += total_loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step()
model.zero_grad()
global_step += 1
if args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.evaluate_during_training:
result = evaluate(args, model, tokenizer)
for key, value in result.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss-logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir)
torch.save(args, 'training_args.bin')
logger.info('Saving model checkpoint to %s', output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=''):
eval_output_dir = args.output_dir
results = {}
eval_dataset = load_and_cache_examples(args, tokenizer, set_type='dev')
if not os.path.exists(eval_output_dir):
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info('***** Running evaluation {} *****'.format(prefix))
logger.info(' Num examples = %d', len(eval_dataset))
logger.info(' Batch size = %d', args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc='Evaluating'):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2],
'labels': batch[3],
'ct_clf_input_ids': batch[4],
'ct_clf_attention_mask': batch[5],
'ct_clf_token_type_ids': batch[6],
'categories': batch[7],
'hand_features': batch[8]}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[0][:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds = np.argmax(preds, axis=1)
result = compute_metrics(preds, out_label_ids)
results.update(result)
output_eval_file = os.path.join(eval_output_dir, 'eval_results.txt')
with open(output_eval_file, 'a') as writer:
for key in sorted(result.keys()):
logger.info(' %s = %s', key, str(result[key]))
writer.write('%s = %s\n' % (key, str(result[key])))
writer.write('='*20 + '\n')
return results
def predict(args, model, tokenizer, index):
test_dataset = load_and_cache_examples(args, tokenizer, set_type='test')
args.test_batch_size = args.per_gpu_test_batch_size * max(1, args.n_gpu)
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.test_batch_size)
# Eval!
logger.info('***** Running prediction *****')
logger.info(' Num examples = %d', len(test_dataset))
logger.info(' Batch size = %d', args.test_batch_size)
preds = None
for batch in tqdm(test_dataloader, desc='Testing'):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2],
'labels': batch[3],
'ct_clf_input_ids': batch[4],
'ct_clf_attention_mask': batch[5],
'ct_clf_token_type_ids': batch[6],
'categories': batch[7],
'hand_features': batch[8]}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[0][:2]
if preds is None:
preds = logits.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
preds = np.argmax(preds, axis=1)
with open(os.path.join(args.data_dir + str(index), 'result.csv'), 'w') as f:
f.write('id,label\n')
for i, pred in enumerate(preds):
f.write('%d,%d\n' % (i, pred))
def load_and_cache_examples(args, tokenizer, set_type):
processor = QPMProcessor()
# Load data features from cache or dataset file
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_customized'.format(
set_type,
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length)
))
if os.path.exists(cached_features_file):
logger.info('Loading features from cache file %s', cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info('Creating features from dataset file at %s', args.data_dir)
label_list = processor.get_labels()
category_list = processor.get_categories()
examples = processor.get_examples(args.data_dir, set_type)
features = convert_examples_to_features(examples, label_list, category_list, args.max_seq_length, tokenizer,
cls_token_at_end=False, # xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
cls_token_segment_id=0,
sep_token=tokenizer.sep_token,
sep_token_extra=False,
pad_on_left=False,
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=0
# cls_token_at_end=bool(args.model_type in ['xlnet']), # xlnet has a cls token at the end
# cls_token=tokenizer.cls_token,
# cls_token_segment_id=2 if args.model_type in ['xlnet'] else 0,
# sep_token=tokenizer.sep_token,
# sep_token_extra=bool(args.model_type in ['roberta']), # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
# pad_on_left=bool(args.model_type in ['xlnet']), # pad on the left for xlnet
# pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
# pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
)
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
all_ct_clf_input_ids = torch.tensor([f.category_clf_input_ids for f in features], dtype=torch.long)
all_ct_clf_input_mask = torch.tensor([f.category_clf_input_mask for f in features], dtype=torch.long)
all_ct_clf_segment_ids = torch.tensor([f.category_clf_segment_ids for f in features], dtype=torch.long)
all_category_ids = torch.tensor([f.category_id for f in features], dtype=torch.long)
all_hand_features = torch.tensor([f.hand_features for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids,
all_ct_clf_input_ids, all_ct_clf_input_mask, all_ct_clf_segment_ids, all_category_ids,
all_hand_features)
return dataset
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument('--data_dir', default=None, type=str, required=True,
help='The input data dir. Should contain the .csv files for the task.')
parser.add_argument('--model_name_or_path', default=None, type=str, required=True,
help='Path to pretrained model or shortcut name selected in the list.')
parser.add_argument('--output_dir', default=None, type=str, required=True,
help='The output directory where the model predictions and checkpoints will be written.')
## Other parameters
parser.add_argument('--config_name', default='', type=str,
help='Pretrained config name or path if not the same as model_name.')
parser.add_argument('--tokenizer_name', default='', type=str,
help='Pretrained tokenizer name or path if not the same as model_name.')
parser.add_argument('--max_seq_length', default='128', type=int,
help='The maximum total input sequence length after tokenization. Sequences longer than this '
'will be truncated, sequences shorter will be padded.')
parser.add_argument('--do_train', action='store_true',
help='Whether to run training.')
parser.add_argument('--do_eval', action='store_true',
help='Whether to run eval on the dev set.')
parser.add_argument('--do_predict', action='store_true',
help='Whether to run test on the test set.')
parser.add_argument('--evaluate_during_training', action='store_true',
help='Rul evaluation during training at each logging step.')
parser.add_argument('--do_lower_case', action='store_true',
help='Set this flag if you are using an uncased model.')
parser.add_argument('--num_features', default=10, type=int,
help='Number of hand-crafted features.')
parser.add_argument('--per_gpu_train_batch_size', default=8, type=int,
help='Batch size per GPU/CPU for training.')
parser.add_argument('--per_gpu_eval_batch_size', default=8, type=int,
help='Batch size per GPU/CPU for evaluation.')
parser.add_argument('--per_gpu_test_batch_size', default=8, type=int,
help='Batch size per GPU/CPU for prediction.')
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help='Number of updates steps to accumulate before performing a backward/update pass.')
parser.add_argument('--learning_rate', default=5e-5, type=float,
help='The initial learning rate for Adam.')
parser.add_argument('--weight_decay', default=0.0, type=float,
help='Weight decay if we apply some.')
parser.add_argument('--adam_epsilon', default=1e-8, type=float,
help='Epsilon for Adam optimizer.')
parser.add_argument('--max_grad_norm', default=1.0, type=float,
help='Max gradient norm.')
parser.add_argument('--num_train_epochs', default=3.0, type=float,
help='Total number of training epochs to perform.')
parser.add_argument('--max_steps', default=-1, type=int,
help='If > 0: set total number of training steps to perform. Override num_train_epochs.')
parser.add_argument('--warmup_steps', default=0, type=int,
help='Linear warmup over warmup_steps.')
parser.add_argument('--logging_steps', type=int, default=50,
help='Log every X updates steps.')
parser.add_argument('--save_steps', type=int, default=200,
help='Save checkpoint every X updates steps.')
parser.add_argument('--eval_all_checkpoints', action='store_true',
help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number.')
parser.add_argument('--no_cuda', action='store_true',
help='Avoid using CUDA when available.')
parser.add_argument('--overwrite_output_dir', action='store_true',
help='Overwrite the content of the output directory.')
parser.add_argument('--overwrite_cache', action='store_true',
help='Overwrite the cached training and evaluation sets.')
parser.add_argument('--seed', type=int, default=42,
help='random seed for initialization')
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
args = parser.parse_args()
# Setup CUDA, GPU
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError('Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.')
device = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu')
args.n_gpu = torch.cuda.device_count()
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger.warning('Process device: %s, n_gpu: %s, 16-bits training: %s',
device, args.n_gpu, args.fp16)
# Set seed
set_seed(args)
# Prepare QPM task
processor = QPMProcessor()
label_list = processor.get_labels()
num_labels = len(label_list)
category_list = processor.get_categories()
clf_num_labels = len(category_list)
# Load pretrained model and tokenizer
config_class, model_class, tokenizer_class = BertConfig, CustomizedBert, BertTokenizer
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
model.to(args.device)
logger.info('Trainning/evaluation parameters %s', args)
parent_data_dir = args.data_dir
parent_output_dir = args.output_dir
# Trainning
results_tmp = {}
if args.do_train:
# 10-Fold dataset for training.
for i in range(0, 10):
# Reload the pretrained model.
model = model_class.from_pretrained(args.model_name_or_path,
from_tf=bool('.ckpt' in args.model_name_or_path),
config=config)
model.to(args.device)
args.data_dir = parent_data_dir + str(i)
args.output_dir = parent_output_dir + str(i)
train_dataset = load_and_cache_examples(args, tokenizer, set_type='train')
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
# Create output directory if needed
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# for reduce the usage of disk, evluate and find the best checkpoint every sub dataset.
args.data_dir = parent_data_dir + str(i)
args.output_dir = parent_output_dir + str(i)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
best_f1 = 0.0
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=global_step)
if result['f1'] > best_f1:
best_f1 = result['f1']
# Save the best model checkpoint
output_dir = os.path.join(args.output_dir, 'best_checkpoint_fold' + str(i))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir)
torch.save(args, 'training_args.bin')
logger.info('Saving model checkpoint to %s', output_dir)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results_tmp.update(result)
checkpoints.remove(args.output_dir)
for checkpoint in checkpoints:
shutil.rmtree(checkpoint)
# Evaluation
results = {}
if args.do_eval:
for i in range(10):
args.data_dir = parent_data_dir + str(i)
args.output_dir = parent_output_dir + str(i)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
best_f1 = 0.0
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=global_step)
if result['f1'] > best_f1:
best_f1 = result['f1']
# Save the best model checkpoint
output_dir = os.path.join(args.output_dir, 'best_checkpoint_fold' + str(i))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir)
torch.save(args, 'training_args.bin')
logger.info('Saving model checkpoint to %s', output_dir)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
# Prediction
if args.do_predict:
for i in range(10):
args.data_dir = parent_data_dir + str(i)
args.output_dir = parent_output_dir + str(i)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
checkpoint = args.output_dir + '/best_checkpoint_fold' + str(i)
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
predict(args, model, tokenizer, i)
# For bagging.
all = pd.read_csv('./data/sample_submission.csv')
for i in range(10):
df = pd.read_csv(args.data_dir + str(i) + '/result.csv')
all['label'] += df['label']
all['label'] = all['label'] // 6
all.to_csv('./data/result.csv', index=False)
if __name__ == '__main__':
main()