-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathleNet-5 Tensorflow & Keras实现.py
190 lines (154 loc) · 8.77 KB
/
leNet-5 Tensorflow & Keras实现.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 11 16:53:57 2019
@author: yz250029
"""
#%% leNet-5
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
minst = input_data.read_data_sets("C:/Users/YZ250029/Desktop/其他/CNNlearning/",one_hot = True)
batch_size = 100
learning_rate = 0.01
learning_rate_decay = 0.99
max_steps = 10000
#1: C1-conv 6*5*5 S2-maxpool 6*2*2 C3-conv 16*5*5 S4 16*2*2 C5 120*5*5 F6:84*(1*1)
def hidden_layer(input_tensor,regularizer,avg_class,resuse):
# C1 特征为6* (28 * 28)
with tf.variable_scope('C1-conv',reuse=resuse):
conv1_weights = tf.get_variable('weight',[5,5,1,6],initializer = tf.truncated_normal_initializer(stddev=0.1))
conv1_biases = tf.get_variable('bias',[6],initializer = tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='VALID')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))
with tf.name_scope('S2-max_pool',):
pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
with tf.variable_scope('C3-conv',reuse=resuse):
conv2_weights = tf.get_variable('weight',[5,5,6,16],initializer=tf.truncated_normal_initializer(stddev=0.1))
#注:上一层池化得到了6个特征
conv2_biases = tf.get_variable('bias',[16],initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='VALID')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))
with tf.name_scope('S4-max_pool',):
pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
# shape = pool2.get_shape().as_list() #[0]是batch中数据个数,[1]为长,[2]为宽,[3]为深度
# nodes = shape[1] * shape[2] * shape[3] #5*5*16
# reshaped = tf.reshape(pool2,[shape[0],nodes]) #化成全连接输入
#
#
with tf.variable_scope('C5-conv',reuse=resuse):
conv3_weights = tf.get_variable('weight',[4,4,16,120],initializer = tf.truncated_normal_initializer(stddev=0.1))
conv3_biases = tf.get_variable('bias',[120],initializer = tf.constant_initializer(0.0))
conv3 = tf.nn.conv2d(pool2,conv3_weights,strides=[1,1,1,1],padding='VALID')
relu3 = tf.nn.relu(tf.nn.bias_add(conv3,conv3_biases))
shape = relu3.get_shape().as_list()
nodes = shape[1] * shape[2] * shape[3]
reshaped = tf.reshape(relu3,[shape[0],nodes])
with tf.variable_scope('layer5-full1',reuse=resuse):
Full_connection1_weights = tf.get_variable('weight',[nodes,84],initializer = tf.truncated_normal_initializer(stddev=0.1))
#add normalization
tf.add_to_collection('losses',regularizer(Full_connection1_weights))
Full_connection1_biases = tf.get_variable("bias",[84],initializer=tf.constant_initializer(0.1))
if avg_class == None:
Full_1 = tf.nn.relu(tf.matmul(reshaped,Full_connection1_weights)+Full_connection1_biases)
else:
Full_1 = tf.nn.relu(tf.matmul(reshaped,avg_class.average(Full_connection1_weights))+avg_class.average(Full_connection1_biases))
#dropout
Full_1 = tf.nn.dropout(Full_1,0.8)
with tf.variable_scope("layer6-full2",reuse = resuse):
Full_connection2_weight =tf.get_variable('weight',[84,10],initializer=tf.truncated_normal_initializer(stddev=0.1))
tf.add_to_collection('losses',regularizer(Full_connection2_weight))
Full_connection2_baises =tf.get_variable('bias',[10],initializer=tf.constant_initializer(0.1))
if avg_class == None:
result = tf.matmul(Full_1,Full_connection2_weight)+Full_connection2_baises
else:
result = tf.matmul(Full_1,avg_class.average(Full_connection2_weight))+avg_class.average(Full_connection2_baises)
return result
#%%
x = tf.placeholder(tf.float32,[batch_size,28,28,1],name='x')
y_= tf.placeholder(tf.float32,[None,10],name='y')
regularizer = tf.contrib.layers.l2_regularizer(0.0001)
y = hidden_layer(x,regularizer,avg_class=None,resuse=False)
training_step = tf.Variable(0,trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(0.99,training_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
average_y = hidden_layer(x,regularizer,avg_class=variable_averages,resuse=True)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=tf.argmax(y_,1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean+tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(learning_rate,training_step,minst.train.num_examples/batch_size,learning_rate_decay,staircase=True)
training_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=training_step)
with tf.control_dependencies([training_step,variables_averages_op]):
train_op = tf.no_op(name='train')
crorent_prediction = tf.equal(tf.arg_max(average_y,1),tf.argmax(y_ ,1))
accuracy= tf.reduce_mean(tf.cast(crorent_prediction,tf.float32))
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(max_steps):
if i % 500 ==0:
x_val,y_val = minst.validation.next_batch(batch_size)
reshaped_x2 = np.reshape(x_val,(batch_size,28,28,1))
validate_feed = {x: reshaped_x2,y_:y_val}
validate_accuracy = sess.run(accuracy,feed_dict = validate_feed)
print('after %d steps, validation accuracy using average model is %g%%' %(i,validate_accuracy*100))
x_train,y_train = minst.train.next_batch(batch_size)
reshaped_xs = np.reshape(x_train,(batch_size,28,28,1))
sess.run(train_op,feed_dict = {x:reshaped_xs,y_:y_train})
#%% KERAS 实现
import keras
from keras.datasets import mnist
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Dense, Flatten
from keras.models import Sequential
from keras.layers import Dropout
(x_train, y_train), (x_test, y_test) = mnist.load_data()
#from tensorflow.examples.tutorials.mnist import input_data
#minst = input_data.read_data_sets("C:/Users/YZ250029/Desktop/其他/CNNlearning/",one_hot = True)
# x_train,y_train = minst.train
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
x_train = x_train / 255
x_test = x_test / 255
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
model = Sequential()
model.add(Conv2D(6, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(16, kernel_size=(5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(120, activation='relu'))
model.add(Dense(84, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.summary()
model.compile(loss=keras.metrics.categorical_crossentropy, optimizer=keras.optimizers.Adam(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=128, epochs=20, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test)
print('Test Loss:', score[0])
print('Test accuracy:', score[1])
#%% keras model 结构实现
from keras.layers import Input, Dense
from keras.models import Model
(x_train, y_train), (x_test, y_test) = mnist.load_data()
#from tensorflow.examples.tutorials.mnist import input_data
#minst = input_data.read_data_sets("C:/Users/YZ250029/Desktop/其他/CNNlearning/",one_hot = True)
# x_train,y_train = minst.train
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
x_train = x_train / 255
x_test = x_test / 255
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
inputs = Input(shape=(28,28,1))
x = Conv2D(6,kernel_size=(5,5), activation='relu')(inputs)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(16,kernel_size=(5,5), activation='relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Dropout(0.5)(x)
x = Flatten()(x)
x = Dense(120,activation = 'relu')(x)
x = Dense(84,activation = 'relu')(x)
predictions = Dense(10,activation = 'softmax')(x)
model = Model(inputs=inputs, outputs=predictions)
model.compile(loss=keras.metrics.categorical_crossentropy, optimizer=keras.optimizers.Adam(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=128, epochs=20, verbose=1, validation_data=(x_test, y_test))