-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpass1.py
276 lines (214 loc) · 10.2 KB
/
pass1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# EECS 442 @ UMich Final Project
# No commercial Use Allowed
import os
import torch
import torchvision
import torchsummary as summary
import sys
sys.path.append(".")
from model import *
from utils import *
if not os.path.exists('output'):
os.makedirs('output')
def train(cfg, device, dtype, net, tight_mask, loss_mask, optim_img, content_loss_list, style_loss_list, tv_loss_list, histogram_loss_list):
'''
Input:
optim_img (Tensor) : image that used for update. In pass1, updated_img = content_img. In pass1, update_img = pass1 output
'''
print('\n===> Start Updating Image')
start_time = time.time()
net = net.to(device).eval()
for param in net.parameters():
param.requires_grad = False
# Set img gradient to be true to update image
img = optim_img.clone()
img = nn.Parameter(optim_img)
# Keep track of loss
content_loss_his = []
style_loss_his = []
tv_loss_his = []
histogram_loss_his = []
def periodic_print(i_iter, c_loss, s_loss, tv_loss, h_loss, total_loss):
if i_iter % cfg.print_interval == 0:
if cfg.tv_weight > 0:
tv_loss = tv_loss.item()
if cfg.histogram_weight > 0:
h_loss = h_loss.item()
if cfg.verbose:
print('Iteration {:06d}; Total Loss {:.06f}; Content Loss {:.06f}; Style Loss {:.06f}; \
TV Loss {:.06f}; Histogram Loss {:.06f}'.format(i_iter, total_loss, c_loss.item(), s_loss.item(), tv_loss, h_loss))
'''
for i, module in enumerate(content_loss_list):
print(" Content " + str(i+1) + " loss: " + str(module.loss.item()))
for i, module in enumerate(style_loss_list):
print(" Style " + str(i+1) + " loss: " + str(module.loss.item()))
if cfg.histogram_weight > 0:
for i, module in enumerate(histogram_loss_list):
print(" Histogram " + str(i+1) + " loss: " + str(module.loss.item()))
if cfg.tv_weight > 0:
for i, module in enumerate(tv_loss_list):
print(" Total Variance " + str(i+1) + " loss: " + str(module.loss.item()))
'''
def periodic_save_img(i_iter):
flag = (i_iter % cfg.save_img_interval == 0) or (i_iter == cfg.n_iter)
if flag:
print('Iteration {:06d} Save Image'.format(i_iter))
output_filename, file_extension = os.path.splitext(cfg.output_img)
if i_iter == cfg.n_iter:
filename = str(output_filename) + str(file_extension)
else:
filename = str(output_filename) + "_iter_{:06d}".format(i_iter) + str(file_extension)
img_deprocessed = img_deprocess(img.clone())
img_deprocessed.save(str(filename))
def periodic_save_loss(i_iter, c_loss, s_loss, tv_loss, h_loss):
if i_iter % 10 == 0:
if cfg.tv_weight > 0:
tv_loss = tv_loss.item()
if cfg.histogram_weight > 0:
h_loss = h_loss.item()
content_loss_his.append(c_loss.item())
style_loss_his.append(s_loss.item())
tv_loss_his.append(tv_loss)
histogram_loss_his.append(h_loss)
# Build optimizer and run optimizer
def closure():
optimizer.zero_grad()
_ = net(img)
c_loss = 0
s_loss = 0
tv_loss = 0
h_loss = 0
total_loss = 0
for i in content_loss_list:
c_loss += i.loss.to(device)
for i in style_loss_list:
s_loss += i.loss.to(device)
if cfg.tv_weight > 0:
for i in tv_loss_list:
tv_loss += i.loss.to(device)
if cfg.histogram_weight > 0: # For pass1, this part is not used
for i in histogram_loss_list:
h_loss += i.loss.to(device)
total_loss = s_loss + c_loss + tv_loss + h_loss
total_loss.backward(retain_graph=True)
# Only update img over masked region
img.grad = torch.mul(img.grad, loss_mask.expand_as(img))
periodic_print(i_iter, c_loss, s_loss, tv_loss, h_loss, total_loss)
periodic_save_img(i_iter)
periodic_save_loss(i_iter, c_loss, s_loss, tv_loss, h_loss)
return total_loss
optimizer = torch.optim.Adam([img], cfg.lr)
i_iter = 0
while i_iter <= cfg.n_iter:
optimizer.step(closure)
i_iter += 1
time_elapsed = time.time() - start_time
print('@ Time Spend {:.04f} m {:.04f} s'.format(time_elapsed // 60, time_elapsed % 60))
return img, content_loss_his, style_loss_his, tv_loss_his, histogram_loss_his
def build_net(cfg, device, dtype, tight_mask, loss_mask, StyleLoss, ContentLoss, TVLoss, HistogramLoss):
print('\n===> Build Network with {} & Loss Module'.format(cfg.model))
# Setup Network
content_layers = cfg.content_layers.split(',')
style_layers = cfg.style_layers.split(',')
histogram_layers = cfg.histogram_layers.split(',')
content_loss_list = []
style_loss_list = []
tv_loss_list = []
histogram_loss_list = [] # For pass1, will be empty list
# Build backbone
cnn, layer_list = build_backbone(cfg)
cnn = copy.deepcopy(cnn)
if cfg.verbose:
print('\n===> Build Backbone Network with {}'.format(cfg.model))
print(cnn)
# Build net with loss model
net = nn.Sequential()
next_content_idx, next_style_idx = 1, 1
if cfg.tv_weight > 0:
print('Add TVLoss at Position {}'.format(str(len(net))))
tv_loss = TVLoss(cfg.tv_weight)
net.add_module(str(len(net)), tv_loss)
tv_loss_list.append(tv_loss)
for i, layer in enumerate(list(cnn)):
if next_content_idx <= len(content_layers) or next_style_idx <= len(style_layers):
# Add original conv, relu, maxpool
if isinstance(layer, nn.Conv2d):
net.add_module(str(len(net)), layer)
# sap get a weighted loss mask, to see how this work, checkout the `understand mask` notebook
sap = nn.AvgPool2d(kernel_size=3, stride=1, padding=1)
loss_mask = sap(loss_mask)
elif isinstance(layer, nn.ReLU):
net.add_module(str(len(net)), layer)
elif isinstance(layer, nn.MaxPool2d) or isinstance(layer, nn.AvgPool2d):
net.add_module(str(len(net)), layer)
# Scale the mask into the corresponding spatial size
loss_mask = F.interpolate(loss_mask, scale_factor=(0.5, 0.5))
tight_mask = F.interpolate(tight_mask, scale_factor=(0.5, 0.5))
# Add Loss layer
if layer_list[i] in content_layers and cfg.content_weight > 0:
print('Add Content Loss at Position {}'.format(str(len(net))))
content_loss_layer = ContentLoss(device=device, dtype=dtype, weight=cfg.content_weight, loss_mask=loss_mask)
net.add_module(str(len(net)), content_loss_layer)
content_loss_list.append(content_loss_layer)
next_content_idx += 1
if layer_list[i] in style_layers and cfg.style_weight > 0:
print('Add Style Loss at Position {}'.format(str(len(net))))
style_loss_layer = StyleLoss(device=device, dtype=dtype, weight=cfg.style_weight, loss_mask=loss_mask, match_patch_size=cfg.match_patch_size, stride=1)
net.add_module(str(len(net)), style_loss_layer)
style_loss_list.append(style_loss_layer)
next_style_idx += 1
# For pass1, cfg.histogram_weight == 0, no histogram layer is added here
if layer_list[i] in histogram_layers and cfg.histogram_weight > 0:
print('Add Histogram Loss at Position {}'.format(str(len(net))))
histogram_loss_layer = HistogramLoss(device=device, dtype=dtype, weight=cfg.histogram_weight, loss_mask=loss_mask, tight_mask=tight_mask, n_bins=256)
net.add_module(str(len(net)), histogram_loss_layer)
histogram_loss_list.append(histogram_loss_layer)
del cnn # delet unused net to save memory
net = net.to(device).eval()
for param in net.parameters():
param.requires_grad = False
print(net)
return content_loss_list, style_loss_list, tv_loss_list, histogram_loss_list, net
def capture_fm_pass1(content_loss_list, style_loss_list, tv_loss_list, content_img, style_img, net):
print('\n===> Capture Feature Map & Compute Style Loss Match')
start_time = time.time()
for i in content_loss_list:
i.mode = 'capture'
for i in style_loss_list:
i.mode = 'capture_content'
net(content_img)
for i in content_loss_list:
i.mode = 'None'
for i in style_loss_list:
i.mode = 'capture_style'
net(style_img)
time_elapsed = time.time() - start_time
print('@ Time Spend : {:.04f} m {:.04f} s'.format(time_elapsed // 60, time_elapsed % 60))
# Reset the model to loss mode for update
for i in content_loss_list:
i.mode = 'loss'
for i in style_loss_list:
i.mode = 'loss'
return None
def main():
# Initial Config
cfg = get_args()
# Setup Log
orig_stdout = init_log(cfg)
# Initial Config
dtype, device = setup(cfg)
content_img, style_img, inter_img, tight_mask, loss_mask = preprocess(cfg, dtype, device) # For pass1, inter_img is the official result and is not used in this case
# Build Network
content_loss_list, style_loss_list, tv_loss_list, histogram_loss_list, net = build_net(cfg, device, dtype, tight_mask, loss_mask, StyleLossPass1, ContentLoss, TVLoss, HistogramLoss)
# Capture FM & Compute Match
capture_fm_pass1(content_loss_list, style_loss_list, tv_loss_list, content_img, style_img, net)
# Training
inter_img, content_loss_his, style_loss_his, tv_loss_his, histogram_loss_his = train(cfg, device, dtype, net, tight_mask, loss_mask, content_img, content_loss_list, style_loss_list, tv_loss_list, histogram_loss_list)
# Plot History
plt_plot_loss(content_loss_his, style_loss_his, tv_loss_his, histogram_loss_his, name='pass1')
# Crop output & save
inter_img = tight_mask_crop(cfg, inter_img, style_img, tight_mask)
# End Log
end_log(orig_stdout)
if __name__ == '__main__':
main()