-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRosettaHilbert.py
136 lines (108 loc) · 5.07 KB
/
RosettaHilbert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
# Define the fundamental time quantum
tau_q = 2.203e-15
# Define basic matrices
I2 = np.eye(2, dtype=complex)
sigma_x = np.array([[0, 1], [1, 0]], dtype=complex)
sigma_y = np.array([[0, -1j], [1j, 0]], dtype=complex)
sigma_z = np.array([[1, 0], [0, -1]], dtype=complex)
# Define our base state - eigenstate of sigma_x
psi = np.array([1, 1], dtype=complex) / np.sqrt(2)
# Verify it's an eigenstate of sigma_x
is_eigenstate = np.allclose(sigma_x @ psi, psi)
print(f"Is psi an eigenstate of sigma_x? {is_eigenstate}")
# Define gauge operator with tau_q
G = tau_q * sigma_x
# Test 1-Hilbert space
print("\n=== 1-Hilbert Space Test ===")
invariant1 = psi.conj() @ (G @ psi)
print(f"1-Hilbert invariant: {invariant1}")
print(f"Expected: {tau_q}")
print(f"Ratio to tau_q: {np.abs(invariant1)/tau_q}")
print(f"Match: {np.isclose(np.abs(invariant1), tau_q)}")
# Test 2-Hilbert space
print("\n=== 2-Hilbert Space Test ===")
# Create tensor product state |ψ⊗ψ>
tensor_state = np.kron(psi, psi)
# Create tensor operator G⊗I + I⊗G
G_tensor = np.kron(G, I2) + np.kron(I2, G)
# Calculate expectation value <ψ⊗ψ|G_tensor|ψ⊗ψ>
invariant2 = tensor_state.conj() @ (G_tensor @ tensor_state)
print(f"2-Hilbert invariant: {invariant2}")
print(f"Expected: {2*tau_q}")
print(f"Ratio to 2*tau_q: {np.abs(invariant2)/(2*tau_q)}")
print(f"Match: {np.isclose(np.abs(invariant2), 2*tau_q)}")
# Calculate effective tau_q
effective_tau_q = np.abs(invariant2) / 2
print(f"Effective tau_q: {effective_tau_q}")
print(f"Match with original tau_q: {np.isclose(effective_tau_q, tau_q)}")
# Test 3-Hilbert space
print("\n=== 3-Hilbert Space Test ===")
# Create tensor product state |ψ⊗ψ⊗ψ>
tensor_state3 = np.kron(np.kron(psi, psi), psi)
# Create tensor operator G⊗I⊗I + I⊗G⊗I + I⊗I⊗G
term1 = np.kron(np.kron(G, I2), I2)
term2 = np.kron(np.kron(I2, G), I2)
term3 = np.kron(np.kron(I2, I2), G)
G_tensor3 = term1 + term2 + term3
# Calculate expectation value
invariant3 = tensor_state3.conj() @ (G_tensor3 @ tensor_state3)
print(f"3-Hilbert invariant: {invariant3}")
print(f"Expected: {3*tau_q}")
print(f"Ratio to 3*tau_q: {np.abs(invariant3)/(3*tau_q)}")
print(f"Match: {np.isclose(np.abs(invariant3), 3*tau_q)}")
# Calculate effective tau_q
effective_tau_q3 = np.abs(invariant3) / 3
print(f"Effective tau_q: {effective_tau_q3}")
print(f"Match with original tau_q: {np.isclose(effective_tau_q3, tau_q)}")
# Dimension translation tests
print("\n=== Dimension Translation Tests ===")
print(f"1-Hilbert invariant: {np.abs(invariant1)}")
print(f"2-Hilbert invariant: {np.abs(invariant2)}")
print(f"3-Hilbert invariant: {np.abs(invariant3)}")
print(f"\nRatio 2-Hilbert/1-Hilbert: {np.abs(invariant2)/np.abs(invariant1)} (expected: 2)")
print(f"Ratio 3-Hilbert/2-Hilbert: {np.abs(invariant3)/np.abs(invariant2)} (expected: 1.5)")
print(f"Ratio 3-Hilbert/1-Hilbert: {np.abs(invariant3)/np.abs(invariant1)} (expected: 3)")
# Testing dimension translation directly
print("\n=== Direct Translation Tests ===")
# 1D to 2D translation
direct_1d_to_2d = 2 * np.abs(invariant1)
print(f"1D→2D translation: {direct_1d_to_2d}")
print(f"Actual 2D value: {np.abs(invariant2)}")
print(f"Match: {np.isclose(direct_1d_to_2d, np.abs(invariant2))}")
# 2D to 3D translation
direct_2d_to_3d = 1.5 * np.abs(invariant2)
print(f"2D→3D translation: {direct_2d_to_3d}")
print(f"Actual 3D value: {np.abs(invariant3)}")
print(f"Match: {np.isclose(direct_2d_to_3d, np.abs(invariant3))}")
# 1D to 3D translation
direct_1d_to_3d = 3 * np.abs(invariant1)
print(f"1D→3D translation: {direct_1d_to_3d}")
print(f"Actual 3D value: {np.abs(invariant3)}")
print(f"Match: {np.isclose(direct_1d_to_3d, np.abs(invariant3))}")
# Demonstrate tau_q as a dimensional translator between Hilbert spaces
print("\n=== τ_q as Dimensional Translator ===")
print(f"τ_q value: {tau_q}")
print(f"1-Hilbert space invariant: {np.abs(invariant1)}")
print(f"Translation factor τ_q: {np.abs(invariant1)/tau_q}")
print(f"\nTranslation from 1→2 Hilbert spaces")
print(f"Multiply by 2: {tau_q} → {2*tau_q}")
print(f"Result: {np.abs(invariant2)}")
print(f"\nTranslation from 1→3 Hilbert spaces")
print(f"Multiply by 3: {tau_q} → {3*tau_q}")
print(f"Result: {np.abs(invariant3)}")
print(f"\nExtraction from 3→1 Hilbert spaces")
print(f"Divide by 3: {np.abs(invariant3)} → {np.abs(invariant3)/3}")
print(f"Result matches τ_q: {np.isclose(np.abs(invariant3)/3, tau_q)}")
# Mathematical relationship between quantum time and dimensionality
print("\n=== Mathematical Implications ===")
print("The results suggest that τ_q functions as a fundamental unit")
print("of translation between different dimensional Hilbert spaces.")
print("This translation is exact, with the invariant scaling precisely")
print("with the number of dimensions:")
print("\nFor n-dimensional Hilbert space, the invariant equals n·τ_q")
for n in range(1, 4):
print(f" {n}-Hilbert space: {n}·τ_q = {n*tau_q}")
print("\nThis creates a direct mapping between time (via τ_q) and dimension,")
print("suggesting that time quantization might be intrinsically connected")
print("to the dimensionality of physical reality.")