-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGrandUnifiedTangential.py
240 lines (197 loc) · 9.28 KB
/
GrandUnifiedTangential.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import expm
from scipy.optimize import minimize
class GrandUnifiedEigenTangential:
def __init__(self, tau_q=2.203e-15, dim=12):
self.tau_q = tau_q
self.dim = dim
self.a = np.pi
self.b = 0.5
# Basic matrices
self.I2 = np.eye(2, dtype=complex)
self.sigma_x = np.array([[0, 1], [1, 0]], dtype=complex)
self.sigma_y = np.array([[0, -1j], [1j, 0]], dtype=complex)
self.sigma_z = np.array([[1, 0], [0, -1]], dtype=complex)
# Create the unified field operator
self.F = self._create_unified_field_operator()
self._compute_eigenstructure()
def _create_unified_field_operator(self):
return self.a * self.I2 + self.b * self.sigma_z + self.tau_q * self.sigma_x
def _compute_eigenstructure(self):
self.eigenvalues, self.eigenvectors = np.linalg.eig(self.F)
self.eigenphases = np.angle(self.eigenvalues)
self.tangent_phases = np.tan(self.eigenphases)
self.H = self.F / self.tau_q
self.H_eigenvalues, _ = np.linalg.eig(self.H)
self.U = expm(-1j * self.F)
self.U_eigenvalues, _ = np.linalg.eig(self.U)
self.arccos_phases = np.arccos(np.real(self.U_eigenvalues))
def find_grand_unified_tangential(self, particle_masses=None):
if particle_masses is None:
# Use standard particle masses in GeV/c²
particle_masses = {
'electron': 0.000511,
'muon': 0.1057,
'tau': 1.777,
'up': 0.0022,
'down': 0.0047,
'charm': 1.27,
'strange': 0.095,
'top': 172.5,
'bottom': 4.18,
'W': 80.4,
'Z': 91.2,
'Higgs': 125.0
}
N = len(particle_masses)
particles = list(particle_masses.keys())
masses = np.array(list(particle_masses.values()))
log_masses = np.log10(masses) # Work in log space for wide-ranging values
def global_phase_objective(params):
# First N-1 phases (last one is determined by 2π constraint)
phases = np.append(params[:N-1], 2*np.pi - np.sum(params[:N-1]))
# Calculate tangential relationships
tangentials = np.tan(phases)
# Calculate predicted masses using eigenphase-mass mapping
predicted = np.zeros(N)
for i in range(N):
# Create superposition with proper phase relationships
phase_sum = 0
for j in range(N):
phase_diff = phases[i] - phases[j]
phase_sum += np.cos(phase_diff)
predicted[i] = np.abs(phase_sum) * self.tau_q
# Safe normalization to match mass range
range_pred = np.max(predicted) - np.min(predicted)
if range_pred > 1e-10: # Prevent division by zero
predicted = (predicted - np.min(predicted)) / range_pred
predicted = predicted * (np.max(masses) - np.min(masses)) + np.min(masses)
# Calculate error in log space
log_predicted = np.log10(predicted + 1e-20) # Avoid log(0)
error = np.sum((log_predicted - log_masses)**2)
# Add penalty for constraint violations
penalty = 0
if np.sum(phases) != 2*np.pi:
penalty += 1000 * np.abs(np.sum(phases) - 2*np.pi)
return error + penalty
# Initial guess: evenly distributed phases
initial_params = np.linspace(0, 2*np.pi, N+1)[:-2]
# Bounds: all phases between 0 and 2π
bounds = [(0, 2*np.pi)] * (N-1)
# Optimize with multiple attempts from different starting points
best_result = None
best_value = float('inf')
for attempt in range(5):
if attempt > 0:
# Random perturbation of initial guess
initial_params = np.random.uniform(0, 2*np.pi, N-1)
# Ensure they sum to less than 2π
if np.sum(initial_params) > 2*np.pi:
initial_params = initial_params * (2*np.pi / (np.sum(initial_params) * 1.1))
result = minimize(
global_phase_objective,
initial_params,
bounds=bounds,
method='L-BFGS-B',
options={'maxiter': 1000}
)
if result.fun < best_value:
best_value = result.fun
best_result = result
# Extract optimized phases
opt_phases = np.append(best_result.x, 2*np.pi - np.sum(best_result.x))
# Ensure exactly 2π sum (floating point precision issues)
opt_phases[-1] = 2*np.pi - np.sum(opt_phases[:-1])
# Calculate tangential relationships
tangentials = np.tan(opt_phases)
# Calculate pairwise tangential relationships
tan_matrix = np.zeros((N, N))
for i in range(N):
for j in range(N):
phase_diff = opt_phases[i] - opt_phases[j]
tan_matrix[i, j] = np.tan(phase_diff)
# Calculate the grand unified tangential
# Use geometric mean to capture the fundamental relationship
nonzero_tangentials = tangentials[np.isfinite(tangentials)]
if len(nonzero_tangentials) > 0:
# Take absolute value before geometric mean
grand_tangential = np.exp(np.mean(np.log(np.abs(nonzero_tangentials) + 1e-10)))
else:
grand_tangential = np.nan
return {
'particles': particles,
'optimized_phases': opt_phases,
'tangentials': tangentials,
'tangential_matrix': tan_matrix,
'grand_unified_tangential': grand_tangential,
'phase_sum': np.sum(opt_phases),
'optimization_success': best_result.success
}
def visualize_grand_tangential(self, result):
if result is None:
print("No grand unified tangential result provided.")
return
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
# Plot 1: Phase distribution on unit circle
angles = result['optimized_phases']
particles = result['particles']
ax1.set_aspect('equal')
# Draw unit circle
theta = np.linspace(0, 2*np.pi, 100)
ax1.plot(np.cos(theta), np.sin(theta), 'k--', alpha=0.2)
# Plot particle phases
for i, particle in enumerate(particles):
x = np.cos(angles[i])
y = np.sin(angles[i])
ax1.plot([0, x], [0, y], 'b-', alpha=0.3)
ax1.plot(x, y, 'ro')
ax1.text(x*1.1, y*1.1, particle, fontsize=8, ha='center', va='center')
ax1.grid(True, alpha=0.3)
ax1.set_title(f"Particle Phase Distribution (Sum: {result['phase_sum']:.6f})")
ax1.set_xlim(-1.2, 1.2)
ax1.set_ylim(-1.2, 1.2)
# Plot 2: Tangential relationships heatmap
tan_matrix = np.abs(result['tangential_matrix'])
# Apply log scaling with offset to handle zeros and infinities
log_matrix = np.log10(tan_matrix + 1e-10)
im = ax2.imshow(log_matrix, cmap='viridis')
fig.colorbar(im, ax=ax2, label='log10(|tan(φi-φj)|)')
# Properly set tick positions before labels
ax2.set_xticks(np.arange(len(particles)))
ax2.set_yticks(np.arange(len(particles)))
ax2.set_xticklabels(particles, rotation=45, ha='right')
ax2.set_yticklabels(particles)
ax2.set_title(f"Tangential Relationships\nGrand Unified Tangential: {result['grand_unified_tangential']:.6f}")
plt.tight_layout()
plt.show()
# Show eigenphase structure
plt.figure(figsize=(10, 6))
plt.subplot(121)
plt.title("Eigenphase distribution")
plt.plot(angles, 'bo-')
plt.xlabel("Particle index")
plt.ylabel("Phase (radians)")
plt.grid(True)
plt.subplot(122)
plt.title("Tangential values")
finite_tangentials = [t for t in result['tangentials'] if np.isfinite(t)]
plt.plot(finite_tangentials, 'ro-')
plt.axhline(y=result['grand_unified_tangential'], color='k', linestyle='--',
label=f'GUT: {result["grand_unified_tangential"]:.6f}')
plt.xlabel("Particle index")
plt.ylabel("tan(φ)")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# Run the solver
gut_solver = GrandUnifiedEigenTangential()
gut_result = gut_solver.find_grand_unified_tangential()
gut_solver.visualize_grand_tangential(gut_result)
print(f"Grand Unified Tangential: {gut_result['grand_unified_tangential']}")
print(f"Optimization success: {gut_result['optimization_success']}")
print(f"Phase sum: {gut_result['phase_sum']} (should be 2π={2*np.pi})")
print(f"\nParticle phases (radians):")
for particle, phase in zip(gut_result['particles'], gut_result['optimized_phases']):
print(f"{particle}: {phase:.6f}")