|
| 1 | +import numpy as np |
| 2 | +import scipy.stats as stats |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +import argparse |
| 5 | + |
| 6 | +def correlation_coefficient(x, y): |
| 7 | + return np.corrcoef(x, y)[0, 1] |
| 8 | + |
| 9 | +def poisson_probability(lmbda, k): |
| 10 | + return stats.poisson.pmf(k, lmbda) |
| 11 | + |
| 12 | +def normal_distribution_pdf(x, mean, std_dev): |
| 13 | + return stats.norm.pdf(x, mean, std_dev) |
| 14 | + |
| 15 | +def normal_distribution_cdf(x, mean, std_dev): |
| 16 | + return stats.norm.cdf(x, mean, std_dev) |
| 17 | + |
| 18 | +def log_normal_distribution_pdf(x, mean, std_dev): |
| 19 | + return stats.lognorm.pdf(x, std_dev, scale=np.exp(mean)) |
| 20 | + |
| 21 | +def gamma_distribution_pdf(x, alpha, beta): |
| 22 | + return stats.gamma.pdf(x, alpha, scale=1/beta) |
| 23 | + |
| 24 | +def z_value(x, mean, std_dev): |
| 25 | + return (x - mean) / std_dev |
| 26 | + |
| 27 | +def binomial_probability(n, p, k): |
| 28 | + return stats.binom.pmf(k, n, p) |
| 29 | + |
| 30 | +def exponential_probability(lmbda, x): |
| 31 | + return stats.expon.pdf(x, scale=1/lmbda) |
| 32 | + |
| 33 | +def plot_poisson(lmbda, max_k=15): |
| 34 | + k_values = np.arange(0, max_k+1) |
| 35 | + probabilities = [poisson_probability(lmbda, k) for k in k_values] |
| 36 | + plt.bar(k_values, probabilities, color='skyblue', alpha=0.7) |
| 37 | + plt.xlabel("Number of Events (k)") |
| 38 | + plt.ylabel("Probability") |
| 39 | + plt.title(f"Poisson Distribution (λ={lmbda})") |
| 40 | + plt.show() |
| 41 | + |
| 42 | +def plot_normal(mean, std_dev): |
| 43 | + x = np.linspace(mean - 4*std_dev, mean + 4*std_dev, 100) |
| 44 | + y = normal_distribution_pdf(x, mean, std_dev) |
| 45 | + plt.plot(x, y, color='red', label='PDF') |
| 46 | + plt.fill_between(x, y, alpha=0.2, color='red') |
| 47 | + plt.xlabel("X Values") |
| 48 | + plt.ylabel("Probability Density") |
| 49 | + plt.title(f"Normal Distribution (μ={mean}, σ={std_dev})") |
| 50 | + plt.legend() |
| 51 | + plt.show() |
| 52 | + |
| 53 | +def main(): |
| 54 | + parser = argparse.ArgumentParser(description="Probability Calculator") |
| 55 | + parser.add_argument("--correlation", nargs=2, type=float, metavar=("x", "y"), help="Calculate Correlation Coefficient") |
| 56 | + parser.add_argument("--poisson", nargs=2, type=float, metavar=("lambda", "k"), help="Calculate Poisson probability P(X=k)") |
| 57 | + parser.add_argument("--normal", nargs=3, type=float, metavar=("x", "mean", "std_dev"), help="Calculate Normal PDF and CDF") |
| 58 | + parser.add_argument("--lognormal", nargs=3, type=float, metavar=("x", "mean", "std_dev"), help="Calculate Log-Normal PDF and CDF") |
| 59 | + parser.add_argument("--gamma", nargs=3, type=float, metavar=("x", "alpha", "beta"), help="Calculate Gamma PDF and CDF") |
| 60 | + parser.add_argument("--zvalue", nargs=3, type=float, metavar=("x", "mean", "std_dev"), help="Calculate Z-value") |
| 61 | + parser.add_argument("--binomial", nargs=3, type=float, metavar=("n", "p", "k"), help="Calculate Binomial probability P(X=k)") |
| 62 | + parser.add_argument("--exponential", nargs=2, type=float, metavar=("lambda", "x"), help="Calculate Exponential PDF and CDF") |
| 63 | + parser.add_argument("--plot_poisson", type=float, metavar="lambda", help="Plot Poisson distribution") |
| 64 | + parser.add_argument("--plot_normal", nargs=2, type=float, metavar=("mean", "std_dev"), help="Plot Normal distribution") |
| 65 | + args = parser.parse_args() |
| 66 | + |
| 67 | + if args.correlation: |
| 68 | + x, y = args.correlation |
| 69 | + corr = correlation_coefficient(x, y) |
| 70 | + print(f"Correlation Coefficient: {corr:.4f}") |
| 71 | + |
| 72 | + if args.poisson: |
| 73 | + lmbda, k = args.poisson |
| 74 | + prob = poisson_probability(lmbda, k) |
| 75 | + print(f"Poisson P(X={int(k)}) with λ={lmbda}: {prob:.4f}") |
| 76 | + |
| 77 | + if args.normal: |
| 78 | + x, mean, std_dev = args.normal |
| 79 | + pdf_val = normal_distribution_pdf(x, mean, std_dev) |
| 80 | + cdf_val = normal_distribution_cdf(x, mean, std_dev) |
| 81 | + print(f"Normal Distribution at X={x} (μ={mean}, σ={std_dev}): PDF={pdf_val:.4f}, CDF={cdf_val:.4f}") |
| 82 | + |
| 83 | + if args.lognormal: |
| 84 | + x, mean, std_dev = args.lognormal |
| 85 | + pdf_val = log_normal_distribution_pdf(x, mean, std_dev) |
| 86 | + print(f"Log-Normal Distribution at X={x} (μ={mean}, σ={std_dev}): PDF={pdf_val:.4f}") |
| 87 | + |
| 88 | + if args.gamma: |
| 89 | + x, alpha, beta = args.gamma |
| 90 | + pdf_val = gamma_distribution_pdf(x, alpha, beta) |
| 91 | + print(f"Gamma Distribution at X={x} (α={alpha}, β={beta}): PDF={pdf_val:.4f}") |
| 92 | + |
| 93 | + if args.zvalue: |
| 94 | + x, mean, std_dev = args.zvalue |
| 95 | + z = z_value(x, mean, std_dev) |
| 96 | + print(f"Z-value for X={x} (μ={mean}, σ={std_dev}): {z:.4f}") |
| 97 | + |
| 98 | + if args.binomial: |
| 99 | + n, p, k = args.binomial |
| 100 | + prob = binomial_probability(n, p, k) |
| 101 | + print(f"Binomial P(X={int(k)}) with n={int(n)}, p={p}: {prob:.4f}") |
| 102 | + |
| 103 | + if args.exponential: |
| 104 | + lmbda, x = args.exponential |
| 105 | + pdf_val = exponential_probability(lmbda, x) |
| 106 | + print(f"Exponential Distribution at X={x} (λ={lmbda}): PDF={pdf_val:.4f}") |
| 107 | + |
| 108 | + if args.plot_poisson: |
| 109 | + plot_poisson(args.plot_poisson) |
| 110 | + |
| 111 | + if args.plot_normal: |
| 112 | + mean, std_dev = args.plot_normal |
| 113 | + plot_normal(mean, std_dev) |
| 114 | + |
| 115 | +if __name__ == "__main__": |
| 116 | + main() |
| 117 | + |
| 118 | +# Example Usage: |
| 119 | + |
| 120 | +#python probability.py --correlation 2 4 |
| 121 | +#python probability.py --poisson 4 2 |
| 122 | +#python probability.py --normal 2 0 1 |
| 123 | +#python probability.py --lognormal 20 2 3 |
| 124 | +#python probability.py --gamma 2 2 1 |
| 125 | +#python probability.py --zvalue 20 2 4 |
| 126 | +#python probability.py --binomial 10 0.5 3 |
| 127 | +#python probability.py --exponential 2 3 |
| 128 | +#python probability.py --plot_poisson 4 |
| 129 | +#python probability.py --plot_normal 0 1 |
| 130 | + |
0 commit comments