|
1 | 1 | using Microsoft.ML.OnnxRuntime.Tensors;
|
2 |
| -using OnnxStack.StableDiffusion.Config; |
3 |
| -using OnnxStack.StableDiffusion.Results; |
| 2 | +using OnnxStack.StableDiffusion.Models; |
4 | 3 | using SixLabors.ImageSharp;
|
5 | 4 | using SixLabors.ImageSharp.PixelFormats;
|
6 | 5 | using SixLabors.ImageSharp.Processing;
|
7 | 6 | using System;
|
| 7 | +using System.IO; |
8 | 8 |
|
9 | 9 | namespace OnnxStack.StableDiffusion.Helpers
|
10 | 10 | {
|
11 | 11 | internal static class ImageHelpers
|
12 | 12 | {
|
13 | 13 | /// <summary>
|
14 |
| - /// Convert a Tensor to image. |
| 14 | + /// Converts to image. |
15 | 15 | /// </summary>
|
16 |
| - /// <param name="options">The options.</param> |
17 | 16 | /// <param name="imageTensor">The image tensor.</param>
|
18 | 17 | /// <returns></returns>
|
19 |
| - public static ImageResult TensorToImage(SchedulerOptions options, DenseTensor<float> imageTensor) |
| 18 | + public static Image<Rgb24> ToImage(this DenseTensor<float> imageTensor) |
20 | 19 | {
|
21 |
| - var result = new Image<Rgba32>(options.Width, options.Height); |
22 |
| - for (var y = 0; y < options.Height; y++) |
| 20 | + var height = imageTensor.Dimensions[2]; |
| 21 | + var width = imageTensor.Dimensions[3]; |
| 22 | + var result = new Image<Rgb24>(width, height); |
| 23 | + for (var y = 0; y < height; y++) |
23 | 24 | {
|
24 |
| - for (var x = 0; x < options.Width; x++) |
| 25 | + for (var x = 0; x < width; x++) |
25 | 26 | {
|
26 |
| - result[x, y] = new Rgba32( |
| 27 | + result[x, y] = new Rgb24( |
27 | 28 | CalculateByte(imageTensor, 0, y, x),
|
28 | 29 | CalculateByte(imageTensor, 1, y, x),
|
29 | 30 | CalculateByte(imageTensor, 2, y, x)
|
30 | 31 | );
|
31 | 32 | }
|
32 | 33 | }
|
33 |
| - return new ImageResult(result); |
| 34 | + return result; |
34 | 35 | }
|
35 | 36 |
|
| 37 | + |
36 | 38 | /// <summary>
|
37 |
| - /// Converts an DenseTensor image to Image<Rgba32> |
| 39 | + /// Converts to image byte array. |
38 | 40 | /// </summary>
|
39 | 41 | /// <param name="imageTensor">The image tensor.</param>
|
40 |
| - /// <param name="width">The width.</param> |
41 |
| - /// <param name="height">The height.</param> |
42 | 42 | /// <returns></returns>
|
43 |
| - public static Image<Rgba32> TensorToImage(DenseTensor<float> imageTensor, int width, int height) |
| 43 | + public static byte[] ToImageBytes(this DenseTensor<float> imageTensor) |
44 | 44 | {
|
45 |
| - var image = new Image<Rgba32>(width, height); |
46 |
| - for (var y = 0; y < height; y++) |
| 45 | + using (var image = imageTensor.ToImage()) |
| 46 | + using (var memoryStream = new MemoryStream()) |
47 | 47 | {
|
48 |
| - for (var x = 0; x < width; x++) |
49 |
| - { |
50 |
| - image[x, y] = new Rgba32( |
51 |
| - CalculateByte(imageTensor, 0, y, x), |
52 |
| - CalculateByte(imageTensor, 1, y, x), |
53 |
| - CalculateByte(imageTensor, 2, y, x) |
54 |
| - ); |
55 |
| - } |
| 48 | + image.SaveAsPng(memoryStream); |
| 49 | + return memoryStream.ToArray(); |
56 | 50 | }
|
57 |
| - return image; |
| 51 | + } |
| 52 | + |
| 53 | + |
| 54 | + /// <summary> |
| 55 | + /// Converts to image memory stream. |
| 56 | + /// </summary> |
| 57 | + /// <param name="imageTensor">The image tensor.</param> |
| 58 | + /// <returns></returns> |
| 59 | + public static Stream ToImageStream(this DenseTensor<float> imageTensor) |
| 60 | + { |
| 61 | + using (var image = imageTensor.ToImage()) |
| 62 | + { |
| 63 | + var memoryStream = new MemoryStream(); |
| 64 | + image.SaveAsPng(memoryStream); |
| 65 | + return memoryStream; |
| 66 | + } |
| 67 | + } |
| 68 | + |
| 69 | + |
| 70 | + public static DenseTensor<float> ToDenseTensor(this InputImage imageData, int width, int height) |
| 71 | + { |
| 72 | + if (!string.IsNullOrEmpty(imageData.ImagePath)) |
| 73 | + return TensorFromFile(imageData.ImagePath, width, height); |
| 74 | + if(imageData.ImageBytes != null) |
| 75 | + return TensorFromBytes(imageData.ImageBytes, width, height); |
| 76 | + if (imageData.ImageStream != null) |
| 77 | + return TensorFromStream(imageData.ImageStream, width, height); |
| 78 | + if (imageData.ToDenseTensor != null) |
| 79 | + return imageData.ImageTensor.ToDenseTensor(); // Note: Tensor Copy |
| 80 | + |
| 81 | + return null; |
58 | 82 | }
|
59 | 83 |
|
60 | 84 |
|
@@ -111,31 +135,55 @@ public static void TensorToImageDebug(DenseTensor<float> imageTensor, int size,
|
111 | 135 | /// <param name="width">The width.</param>
|
112 | 136 | /// <param name="height">The height.</param>
|
113 | 137 | /// <returns></returns>
|
114 |
| - public static DenseTensor<float> TensorFromImage(string filename, int width, int height) |
| 138 | + public static DenseTensor<float> TensorFromFile(string filename, int width, int height) |
115 | 139 | {
|
116 | 140 | using (Image<Rgb24> image = Image.Load<Rgb24>(filename))
|
117 | 141 | {
|
118 | 142 | Resize(image, width, height);
|
119 |
| - var imageArray = new DenseTensor<float>(new[] { 1, 3, width, height }); |
120 |
| - image.ProcessPixelRows(img => |
121 |
| - { |
122 |
| - for (int x = 0; x < width; x++) |
123 |
| - { |
124 |
| - for (int y = 0; y < height; y++) |
125 |
| - { |
126 |
| - var pixelSpan = img.GetRowSpan(y); |
127 |
| - imageArray[0, 0, y, x] = (pixelSpan[x].R / 255.0f) * 2.0f - 1.0f; |
128 |
| - imageArray[0, 1, y, x] = (pixelSpan[x].G / 255.0f) * 2.0f - 1.0f; |
129 |
| - imageArray[0, 2, y, x] = (pixelSpan[x].B / 255.0f) * 2.0f - 1.0f; |
130 |
| - } |
131 |
| - } |
132 |
| - }); |
133 |
| - return imageArray; |
| 143 | + return ProcessPixels(width, height, image); |
134 | 144 | }
|
135 | 145 | }
|
136 | 146 |
|
137 | 147 |
|
| 148 | + public static DenseTensor<float> TensorFromBytes(byte[] imageBytes, int width, int height) |
| 149 | + { |
| 150 | + using (var image = Image.Load<Rgb24>(imageBytes)) |
| 151 | + { |
| 152 | + Resize(image, width, height); |
| 153 | + return ProcessPixels(width, height, image); |
| 154 | + } |
| 155 | + } |
138 | 156 |
|
| 157 | + public static DenseTensor<float> TensorFromStream(Stream imageStream, int width, int height) |
| 158 | + { |
| 159 | + using (var image = Image.Load<Rgb24>(imageStream)) |
| 160 | + { |
| 161 | + Resize(image, width, height); |
| 162 | + return ProcessPixels(width, height, image); |
| 163 | + } |
| 164 | + } |
| 165 | + |
| 166 | + |
| 167 | + |
| 168 | + |
| 169 | + private static DenseTensor<float> ProcessPixels(int width, int height, Image<Rgb24> image) |
| 170 | + { |
| 171 | + var imageArray = new DenseTensor<float>(new[] { 1, 3, width, height }); |
| 172 | + image.ProcessPixelRows(img => |
| 173 | + { |
| 174 | + for (int x = 0; x < width; x++) |
| 175 | + { |
| 176 | + for (int y = 0; y < height; y++) |
| 177 | + { |
| 178 | + var pixelSpan = img.GetRowSpan(y); |
| 179 | + imageArray[0, 0, y, x] = (pixelSpan[x].R / 255.0f) * 2.0f - 1.0f; |
| 180 | + imageArray[0, 1, y, x] = (pixelSpan[x].G / 255.0f) * 2.0f - 1.0f; |
| 181 | + imageArray[0, 2, y, x] = (pixelSpan[x].B / 255.0f) * 2.0f - 1.0f; |
| 182 | + } |
| 183 | + } |
| 184 | + }); |
| 185 | + return imageArray; |
| 186 | + } |
139 | 187 |
|
140 | 188 |
|
141 | 189 | /// <summary>
|
|
0 commit comments