-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
83 lines (66 loc) · 2.51 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# -*- coding: utf-8 -*-
import re
import numpy as np
import torch
import time
from torch.utils.data import Dataset
from transformers import BertTokenizer
bert_name = 'bert-base-uncased'
bert_tokenizer = BertTokenizer.from_pretrained(bert_name)
seed = 1234
class Data(Dataset):
def __init__(self, x, y):
self.data = list(zip(x, y))
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
assert idx < len(self)
return self.data[idx]
def now():
return str(time.strftime('%Y-%m-%d %H:%M:%S'))
def collate_fn(batch):
data, labels = zip(*batch)
inputs = bert_tokenizer(list(data), padding=True, return_tensors='pt')
labels = torch.tensor(labels, dtype=torch.long)
return inputs, labels
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def load_data_and_labels(positive_data_file, negative_data_file):
"""
Loads MR polarity data from files, splits the data into words and generates labels.
Returns split sentences and labels.
"""
# Load data from files
positive_examples = list(open(positive_data_file, "r", encoding='utf-8').readlines())
positive_examples = [s.strip() for s in positive_examples]
negative_examples = list(open(negative_data_file, "r", encoding='utf-8').readlines())
negative_examples = [s.strip() for s in negative_examples]
# Split by words
x_text = positive_examples + negative_examples
x_text = [clean_str(sent) for sent in x_text]
# x_text = list(map(lambda x: x.split(), x_text))
# Generate labels
positive_labels = [1 for _ in positive_examples]
negative_labels = [0 for _ in negative_examples]
y = np.array(positive_labels + negative_labels)
return [x_text, y]
if __name__ == "__main__":
import fire
fire.Fire()