-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotes.tex
469 lines (375 loc) · 36.3 KB
/
notes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
\documentclass[a4paper]{article}
\usepackage{a4wide}
\usepackage[svgnames]{xcolor}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{tikz-cd}
\usetikzlibrary{decorations.pathmorphing}
\usepackage{graphicx}
\usepackage{subfig}
\usepackage{hyperref}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\inv}{inv}
\DeclareMathOperator{\cano}{cano}
\DeclareMathOperator{\p}{\mathcal{P}}
\DeclareMathOperator{\m}{\mathcal{M}}
\DeclareMathOperator{\op}{\mathcal{O}}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem{proposition}[definition]{Proposition}
\newtheorem{example}[definition]{Example}
\newtheorem{lemma}[definition]{Lemma}
\newtheorem{theorem}[definition]{Theorem}
\newtheorem{corollary}[definition]{Corollary}
\newtheorem{remark}[definition]{Remark}
\begin{document}
\section{Definitions and reminders}
\subsection{Species and Operads}
In all the following $\Bbbk$ is a field, $\mathbb{S}$et is the category of finite sets and bijections, $\underline{\text{$\mathbb{S}$et}}$ the category of finite set and maps and $\mathbb{V}\text{ect}_{\Bbbk}$ the category of $\Bbbk$-vector spaces and linear maps.
\begin{definition}
A \textit{vector} (resp \textit{set}) \textit{species} is a functor from $\mathbb{S}$et to $\mathbb{V}\text{ect}_{\Bbbk}$ (resp $\underline{\text{$\mathbb{S}$et}}$).
More informally, a vector (resp set) species $S$ consists of the following data.
\begin{itemize}
\item For each finite set $V$, a vector space (resp set) $S[V]$.
\item For each bijection of finite sets $\sigma: V\rightarrow V'$, a linear map (resp map) $S[\sigma]:S[V]\rightarrow S[V']$. These maps should be such that $S[\sigma\circ\tau] = S[\sigma]\circ S[\tau]$ and $S[\id] = \id$.
\end{itemize}
% A \textit{sub-species} of a vector species $P$ is a vector species $Q$ such that for each finite set $V$, $Q[V]$ is a sub-space of $P[V]$ and for each bijection of finite sets $\sigma: V\rightarrow V'$, $Q[\sigma] = P[\sigma]|_{Q[V]}$.
A \textit{morphism} between vector (resp set) species is a natural transformation.
More informally, a \textit{morphism} $f: R\rightarrow S$ between vector (resp set) species is a collection of linear maps (resp maps) $f_V : R[V] \rightarrow S[V]$ satisfying the naturality axiom: for each bijection $\sigma: V\rightarrow V'$, $f_{V'}\circ R[\sigma] = S[\sigma]\circ f_V$.
We note $\mathcal{L}$ the functor from set species to vector species defined by $L(S)[V] = \Bbbk S[V]$, where $\Bbbk S[V]$ is the free $\Bbbk$ vector space on $S[V]$, and $L(f)_V$ the linear extension of $f$. We will also note $\Bbbk S$ for $\mathcal{L}(S)$.
For any set species $S$, $\Bbbk S[V]$ is naturally equipped with a scalar product $\langle ., .\rangle_{S[V]}$ by considering $S[V]$ as an orthonormal basis. For $x\in\Bbbk S[V]$ we note $\text{Supp}(x) = \{y\in S[V]\,|\, \langle x, y\rangle_{S[V]} > 0\}$ the support of $x$.
\end{definition}
We will use the term species to refer to vector species. For $S$ a species, $V$ a set and $f$ a morphism from $S$ we will note $f$ instead of $f_V$ when no confusion is possible. We will also forget the indices on scalar product and always note $\langle ., .\rangle$.
We note $1$ the set species defined by $1[V] = \{\emptyset\}$ if $V=\emptyset$ and $1[V] = \emptyset$ else; as well as $X$ the set species defined by $X[V] = \{v\}$ if $V=\{v\}$ and $X[V] = \emptyset$ else.
A partition of $V$ is a subset of $\{\pi_1,\dots, \pi_n\} \subseteq \mathcal{P}(V)\setminus\{\emptyset\}$ such that $\pi_i\cap \pi_j = \emptyset$ for all $i\not = j$ and $\sqcup_i \pi_i = V$. We note $\Pi$ the set species of partitions.
\begin{definition}
Let $R$, $S$, $R'$ and $S'$ be four species and $f:R\rightarrow R'$ and $g:S\rightarrow S'$ two morphisms.
\begin{itemize}
\item The \textit{sum} of $R$ and $S$ is the species $R+ S$ defined by $(R+S)[V] = R[V]\oplus S[V]$ for all finite set $V$ and $(R+S)[\sigma]|_{R[V]} = R[\sigma]$ and $(R+ S)[\sigma]|_{S[V]} = S[\sigma]$ for all finite sets $V,V'$ and bijections $\sigma: V\rightarrow V'$.
The \textit{sum} of $f$ and $g$ is the morphism $f+ g: R +S\rightarrow R'+ S'$ defined by $(f+g)_V = f_V\oplus g_V$.
\item The \textit{product} of $R$ and $S$ is the species $R\cdot S$ defined by $R\cdot S[V] = \bigoplus_{V_1\sqcup V_2 = V} R[V_1]\otimes S[V_2]$ and $R\cdot S[\sigma] = \bigoplus_{V_1\sqcup V_2 = V} R[\sigma|_{V_1}]\otimes S[\sigma|_{V_2}]$.
The \textit{product} of $f$ and $g$ is the morphism $f\cdot g: R\otimes S\rightarrow R'\otimes S'$ defined by $(f\cdot g)_V = \bigoplus_{V_1\sqcup V_2 = V}f_{V_1}\otimes g_{V_2}$.
\item The \textit{Hadamard product} of $R$ and $S$ is the species $R\times S$ defined by $(R\times S)[V] = R[V]\otimes S[V]$ (resp $R[V]\times S[V]$) and $(R\times S)[\sigma] = R[\sigma]\otimes S[\sigma]$ (resp $R[\sigma]\times S[\sigma]$).
The Hadamard product of $f$ and $g$ is the morphism $f\times g$ defined by $(f\times g)_V = f_V\otimes g_V$ (resp $(f\times g)_V = f_V\times g_V$).
\item The \textit{derivative} of $R$ is the species $DR=R'$ defined by $R'[V] = R[V+\{\ast\}]$ where the $\ast$ is a "ghost element" not already in $V$ and $R'[\sigma]= R[\sigma']$ where $\sigma' = \sigma$ on $V$ and $\sigma(\ast) = \ast$. The \textit{$n$-th derivative} of $R$ is the species $D^nR=R^{(n)}$ recursively defined by $D^nR = D(D^{n-1}R)$.
% The \textit{$n$-th derivative} of $R$ is the species $D^nR=R^{(n)}$ defined by $D^nR = R[V+\{\ast_1+\dots+\ast_n\}]$ where the $\ast_i$ are "ghost element" not already in $V$ and $D^nR[\sigma]= R[\sigma']$ where $\sigma' = \sigma$ on $V$ and $\sigma' = \id$ on $\{\ast_1,\dots,\ast_n\}$. The \textit{derivative} of $R$ is the 1-st derivative of $R$ and in this case we will note $\ast=\ast_1$.
The \textit{$n$-derivative} of $f$ is the morphism defined by $(D^nf)_V = f_{V+\{\ast_1,\dots,\ast_n\}}$
\item The \textit{substitution} by $S$ in $R$ is the species $R(S)$ defined by $R(S)[V] = \bigoplus_{P\in\Pi[V]}R[\pi]\bigotimes_{P\in\pi}S(P)$ and $R(S)[\sigma]$ is defined by following the definition of sum and product of species.
The \textit{substitution} by $g$ in $f$ is defined by following the definitions of sum and product of morphisms.
\end{itemize}
We have the same definition on set species by replacing direct sum of vector spaces by disjoint unions of sets and tensor product by Cartesian product.
\end{definition}
Note that we stated these were species and morphisms without checking that these definition were functional and natural. Those verifications can be found in (ref...). These definitions are compatible with $\mathcal{L}$ i.e $\mathcal{L}(R+S) = \mathcal{L}(R)+\mathcal{L}(S)$, $\mathcal{L}(f+g) = \mathcal{L}(f)+\mathcal{L}(g)$, $\mathcal{L}(R\cdot S) = \mathcal{L}(R)\cdot \mathcal{L}(S)$ etc.
When no confusion is possible we will note $S$ instead of $\id_S$.
\begin{definition}
A \textit{linear operad} is a triplet $(\op,\eta,e)$ where:
\begin{itemize}
\item $\mathcal{O}$ is a vector species,
\item $\eta$ is a morphism of vector species $\mathcal{O}(\mathcal{O})\rightarrow \mathcal{O}$,
\item $e$ is a morphism of vector species $X \rightarrow \op$.
\end{itemize}
The two morphisms $\eta$ and $e$ should furthermore satisfy the associativity and naturality axioms, i.e the two following diagrams commute, where $\alpha$, $\rho$ and $\lambda$ are the structural morphisms of the monoidal category of vector species (ref...) .
\begin{center}
\begin{tikzcd}
\op(\op(\op)) \arrow[r, "\op(\eta)"] \arrow[d, "\alpha"]& \op(\op) \arrow[r, "\eta"] & \op \\
(\op(\op))(\op) \arrow[r, "\eta(\op)"] & \op(\op) \arrow[ur, "\eta"]
\end{tikzcd}
\end{center}
\begin{center}
\begin{tikzcd}
\op(X) \arrow[r, "\op(e)"] \arrow[rd, "\rho"] & \op(\op) \arrow[d, "\eta"] & X(\op) \arrow[l, "e(\op)" swap]\arrow[dl, "\lambda" swap]\\
& \op
\end{tikzcd}
\end{center}
\end{definition}
We will use the term operad to refer to linear operad.
Let $S$ be a species. We call \textit{partial product} on $S$ a morphism $\circ_{\ast} :S'\cdot S \rightarrow S$. A partial product naturally generalise to families of $n$ morphisms $D^nS\otimes D^mS \rightarrow D^{n+m-1}S$ by the injections
\begin{align*}
D^nS[V_1]\otimes D^mS[V_2] &\cong S'[V_1+\{\ast_1,\dots,\ast_{i-1},\ast_{i+1},\dots,\ast_n\}]\otimes S[V_2+\{\ast_1',\dots\ast_m'\}] \\
&\hookrightarrow (S'\cdot S)[V_1+V_2+\{\ast_1,\dots, \ast_{i-1},\ast_{i+1},\dots,\ast_n\} + \{\ast_1',\dots\ast_m'\}].
\end{align*}
\begin{proposition}
\label{pp}
Let $\op$ be a species equipped with a \textit{partial product} $\circ_{\ast}:\op'\cdot\op\rightarrow \op$ and a morphism $e:X \rightarrow \op$ such that the following diagrams commute.
\begin{center}
\begin{tikzcd}
\op''\cdot\op^2 \arrow[r, "\circ_{\ast_1}"] \arrow[d, "\circ_{\ast_2}\circ\id\cdot\tau"] & \op'\cdot\op \arrow[d, "\circ_{\ast_2}"] & &
\op'\cdot \op'\cdot\op \arrow[r, "\circ_{\ast_1}\cdot\id"] \arrow[d, "\id\cdot\circ_{\ast_2}"] & \op'\cdot\op \arrow[d, "\circ_{\ast_2}"] \\
\op'\cdot \op \arrow[r, "\circ_{\ast_1}"] & \op & &
\op'\cdot \op \arrow[r, "\circ_{\ast_1}"] & \op
\end{tikzcd}
\end{center}
\begin{center}
\begin{tikzcd}
\op'\cdot X \arrow[r, "\op'\cdot e"] \arrow[rd, "p"] & \op'\cdot\op \arrow[d, "\circ_{\ast}"] & X'\cdot \op \arrow[l, "e'\cdot \op" swap]\arrow[dl, "\cong" swap]\\
& \op
\end{tikzcd}
\end{center}
where $\tau_V:x\otimes y\in \op^2[V] \mapsto y\otimes x\in \op^2[V]$ and $p_V: x\otimes \emptyset_{\{v\}} \mapsto \op[\ast\mapsto v](x)$ with $\ast\mapsto v: V\setminus\{v\} + \{\ast\}\rightarrow V$ the bijection that sends $\ast$ on $v$ and is the identity on $V\setminus\{v\}$.
Then $\op$ has an operad structure $(\op,\eta,e)$ uniquely determined by $\circ_{\ast}$.
\end{proposition}
\subsection{Multisets, graphs and co}
Let $V$ be a set. A \textit{multiset} $m$ over $V$ is a set of couples $\{(v,m(v))\,|\, v\in V\}$ in $V\times\mathbb{N}^*$. We call $V$ the domain of $m$ and note $D(m)=V$. We say that $v$ is in $m$ and note $v\in m$ if $v\in D(m)$. For any element $v$ not in the domain of $m$, we note $m(v) = 0$.
We note $\m(V)$ the set of multisets with domain in $\p(V)$, $\m_k(V)$ the set of elements of $\m(V)$ of cardinality $k$ (the cardinality of a multiset $m$ over $V$ being $\sum_{v\in V} m(v)$) and $\m(V)^*$ the set of multisets with domain in $\p(V)^* = \p(V)\setminus\{\emptyset\}$. We identify sets with multisets constant equal to 1.
For $m$ a multiset and $V$ a set, we note $m\cap V = m\cap V\times\mathbb{N}^*$. If $m'$ is an other multiset, we call the union of $m$ and $m'$ the multiset $\{(v,m(v)+m'(v))\,|\, v\in D(m)\cup D(m')\}$ where $m(v) = 0$ if $v\not in D(m)$ and $m'(v) = 0$ if $v\not \in D(m')$.
A \textit{decomposition} of a mutliset $m$ is a tuple of multisets $(m_1,\dots, m_k)$ such that $\bigcup D(m_i) = D(m)$ and $m(v) = m_i(v)$ for all $v\in D(m)$.
\begin{definition}
Let $V$ be a set. A \textit{multi-hypergraph} over $V$ is a multiset with domain in $\m(V)^*$. In this context the elements of $V$ are called \textit{vertices}, the elements of a multi-hypergraphs are called \textit{edges} and the elements of an edge are called its \textit{ends}. A vertex contained in the domain of no edge is called \textit{isolated vertex}. We note $MHG$ the set species of multi-hypergraphs.
A \textit{hypergraph} is a multi-hypergraph whose edges are sets. A \textit{mutltigraph} is a multi-hypergraph whose edges have cardinality 2. A \textit{graph} is a multi-hypergraph which is a hypergraph and a multigraph at the same time. Note $MHG$, $HG$, $MG$ and $G$ the set species corresponding to these structures.
We will also note $F$ the species of forests, which is a subspecies of $G$.
\end{definition}
In contrast with the standard definition, here the sole difference between graphs and multigraphs is that multigraphs can have loops while graphs no; but in both case we accept repetition of edges.
\begin{figure}[htbp]
\begin{center}
\includegraphics[scale=1.5]{fig/he1}
\hspace{2cm}
{\includegraphics[scale=1.5]{fig/he2}}
\hspace{2cm}
\includegraphics[scale=1.5]{fig/he3}
\caption{Three edges of cardinality 3.}
\label{e3}
\end{center}
\end{figure}
\begin{figure}[htbp]
\begin{center}
\includegraphics[scale=1.5]{fig/mhg1}
\caption{A mulit-hypergrah over $\{a,b,c,d,e,f,g\}$.}
\label{mhg}
\end{center}
\end{figure}
\begin{example}
We represented the three edges $\{(1,1),(2,1),(3,1)\}$, $\{(1,2),(2,1)\}$ and $\{(1,3)\}$ in Figure \ref{e3} and the multi-hypergraph $$\{(\{(a,2),(b,1),(d,1)\},1),(\{(b,1),(c,1),(e,1)\},1),(\{e,4\},1),(\{(e,1),(f,1)\},1),(\{(d,1),(e,1)\},2)\}$$ over $\{a,b,c,d,e,f,g\}$ in Figure \ref{mhg}.
\end{example}
\section{Augmented multi-hypergraphs}
\begin{definition}
Let $A$ be a set and $V$ a finite set. An \textit{$A$-augmented end over $V$} is an element $(v,a)$ in $V\times A$, we call $v$ the vertex of the end and $a$ the augmentation of the end. An \textit{$A$-augmented edge over $V$} is multiset of $A$-augmented end over $V$ and an \textit{$A$-augmented multi-hypergraph over $V$} is a multiset of $A$-augmented edges. Note $A\text{-}MHG$ the set species of $A$-augmented multi-hypergraphs.
\end{definition}
The forgetful functor $U:A\text{-}MHG \rightarrow MHG$ is defined by sending any $A$-augmented end $(v,a)$ of a $A$-augmented edges of a $A$-augmented multi-hypergraph on the end $v$. Given an edge $e$ over $V$, an $A$-augmentation of this edge is an $A$-augmented edge $e'$ over $V$ such that $U_V(e') = e$. Given a multi-hypergraph $h$, an $A$-augmentation of this multi-hypergraph is then a $A$-augmented multi-hypergraph $g'$ over $V$ such that $U_V(h') = h$.
\begin{example}
...
\end{example}
Let $A$ be a set and $V$ a finite set. For $a\in A$ and $V\in v$, we will note:
\begin{itemize}
\item $v_a = (a,v)$ for $v\in V$ and $a\in A$,
\item $\prod_{(v,a)\in e} v_a^{e((v,a))}$ for an $A$-augmented edge $e$ over $V$,
\item $\emptyset_V$ the empty $A$-augmented multi-hypergraph over $V$,
\item $\bigoplus_{e_i\in h}h(e_i)e_i$ for an $A$-augmented multi-hypergraph $h$.
\end{itemize}
With these notations we can see $A$-augmented edges over $V$ as monomials on the set of variables $\{v_a\,|\, v\in V, a\in A\}$ and non empty $A$-augmented multi-hypergraphs over $V$ as polynomials with positive integer coefficients on the same set of variables. The binary operation $\oplus$ over $A$-augmented multi-hypergraphs can then be interpreted as the union of multisets of edges or the sum over polynomials. Note that we used $\oplus$ for the sum of polynomials / union of multisets such as to not confuse it with the $+$ of $\Bbbk A\text{-}MHG[V]$. In this context, the sum of polynomials $\oplus$ and the product of polynomials $\cdot$ are distributive over the sum of vectors $+$.
\begin{example}
...
\end{example}
Note $V = \{v_1,\dots, v_n\}$ and $A=\{a_1, a_2, \dots\}$. Let be $h\in A\text{-}MHG[V]$, $1\leq i_1 <\dots < i_k\leq n$ be $k\leq n$ integers, $V'$ be a finite set disjoint of $V$ and for every $1\leq j\leq k$, $a\in A$, $\emptyset\subsetneq V_{j,a} \subseteq V'$. We note $h|_{\{ {v_{i_j}}_a \leftarrow V_{j,a}\}_{1\leq j\leq k, a\in A}}$ the substitution of every $v_{i_j}\in V$ by $\sum_{v\in V_{j,a}} v_a$ in the polynomial $h$, i.e: $$h(\dots, v_{i_1a_1},\dots, v_{i_ja_1},\dots)|_{\{ v_{i_ja} \leftarrow V_{j,a}\}_{1\leq j\leq k, a\in A}} = h(\dots, \sum_{v\in V_{1,a_1}} v_{a_1}, \dots, \sum_{v\in V_{j,a_1}} v_{a_1}, \dots).$$
In the case of the empty $A$-augmented multi-hypergraphs over $V$ we note $\emptyset_V|_{\{ {v_{i_j}}_a \leftarrow V_{j,a}\}_{1\leq j\leq k, a\in A}} = \emptyset_{V\setminus\{v_{i_j}\}_{1\leq j\leq k}}$.
We note $\mathcal{F}_A[V]$ the set of maps from $A$ to $\mathcal{P}\setminus\{\emptyset\}$.
Let $V_1$ and $V_2$ be two finite disjoint sets. For $(h_1,f_1)\in (A\text{-}MHG\times \mathcal{F}_A)'[V_1]$ and $(h_2,f_2)\in (A\text{-}MHG\times \mathcal{F}_A)[V_2]$ we define the element of $\Bbbk((A\text{-}MHG\times\mathcal{F}_A)[V_1+V_2]$:
$$ (h_1,f_1)\circ_{\ast}(h_2,f_2) = \left(h_1|_{\{\ast_a\leftarrow f_2(a)\}_{a\in A}}\oplus h_2, f_1\circ_\ast f_2: a\rightarrow\left\{\begin{array}{cl}
f_1(a) & \text{if $\ast\not\in f_1(a)$}, \\
f_1(a)\setminus\{\ast\} + f_2(a) & \text{else.}\end{array}\right.\right)$$
where $(\sum_i h_i, f) = \sum_i(h_i,f)$.
Let us also define $e:\Bbbk X \rightarrow \Bbbk (A\text{-}MHG\times \mathcal{F}_A)$ by $e_{V}(v) = (\emptyset_{\{v\}},A\mapsto\{v\})$ if $V=\{v\}$ and $e_V = 0$ else.
\begin{lemma}
\label{opfunc}
The partial product $\circ_{\ast}$ on $\mathcal{F}_A$ and the morphism $e:X \rightarrow \Bbbk \mathcal{F}_A$ defined by $e_{V}(v) = A\mapsto\{v\}$ if $V=\{v\}$ and $e_V = \emptyset$ else are such that the diagrams of Proposition \ref{pp} commute and hence define a set operad structure on $\mathcal{F}_A$
\end{lemma}
\begin{proof}
Since $\mathcal{F}_A[\sigma](f) = \sigma\circ f$ it is easy to see that $\circ_{\ast}$ is a morphism of species. Let now be $V_1$, $V_2$ and $V_3$ three disjoint sets.
\begin{itemize}
\item Let be $f_1\in\mathcal{F}_A[V_1+\{\ast_1,\ast_2\}]$, $f_2\in \mathcal{F}_A[V_2]$ and $f_3\in \mathcal{F}_A[V_3]$. Then:
\begin{align*}
(f_1\circ_{\ast_1} f_2)\circ_{\ast_2} f_3 &= a\mapsto\left\{\begin{array}{cl}
f_1(a) & \text{if $\ast_1\not\in f_1(a)$}, \\
f_1(a)\setminus\{\ast_1\} + f_2(a) & \text{else.}\end{array}\right. \circ_{\ast_2} f_3 \\
&= a\mapsto\left\{\begin{array}{cl}
f_1(a) & \text{if $\ast_1\not\in f_1(a)$ and $\ast_2\not\in f_2(a)$}, \\
f_1(a)\setminus\{\ast_2\} + f_3(a) & \text{if $\ast_1\not\in f_1(a)$ and $\ast_2\in f_2(a)$}, \\
f_1(a)\setminus\{\ast_1\} + f_2(a) & \text{if $\ast_1\in f_1(a)$ and $\ast_2\not\in f_2(a)$}, \\
f_1(a)\setminus\{\ast_1,\ast_2\} + f_2(a) + f_3(a) & \text{if $\ast_1\in f_1(a)$ and $\ast_2\in f_2(a)$}.\end{array}\right. \\
&= a\mapsto\left\{\begin{array}{cl}
f_1(a) & \text{if $\ast_2\not\in f_1(a)$}, \\
f_1(a)\setminus\{\ast_1\} + f_3(a) & \text{else.}\end{array}\right. \circ_{\ast_1} f_2 \\
&= (f_1\circ_{\ast_2} f_3)\circ_{\ast_1} f_2
\end{align*}
\item Let be $f_1\in\mathcal{F}_A[V_1+\{\ast_1\}]$, $f_2\in \mathcal{F}_A[V_2+\{\ast_2\}]$ and $f_3\in \mathcal{F}_A[V_3]$. Then:
\begin{align*}
(f_1\circ_{\ast_1} f_2)\circ_{\ast_2} f_3 &= a\mapsto\left\{\begin{array}{cl}
f_1(a) & \text{if $\ast_1\not\in f_1(a)$}, \\
f_1(a)\setminus\{\ast_1\} + f_2(a) & \text{else.}\end{array}\right. \circ_{\ast_2} f_3 \\
&= a\mapsto\left\{\begin{array}{cl}
f_1(a) & \text{if $\ast_1\not\in f_1(a)$ and $\ast_2\not\in f_2(a)$}, \\
f_1(a) & \text{if $\ast_1\not\in f_1(a)$ and $\ast_2\in f_2(a)$}, \\
f_1(a)\setminus\{\ast_1\} + f_2(a) & \text{if $\ast_1\in f_1(a)$ and $\ast_2\not\in f_2(a)$}, \\
f_1(a)\setminus\{\ast_1\} + f_2(a)\setminus\{\ast_2\} + f_3(a) & \text{if $\ast_1\in f_1(a)$ and $\ast_2\in f_2(a)$}.\end{array}\right. \\
&= f_1\circ_{\ast_1} \left\{\begin{array}{cl}
f_2(a) & \text{if $\ast_2\not\in f_2(a)$}, \\
f_2(a)\setminus\{\ast_2\} + f_3(a) & \text{else.}\end{array}\right. \\
&= f_1\circ_{\ast_1}(f_2\circ_{\ast_2} f_3)
\end{align*}
\item Let be $f\in \mathcal{F}_1[V_1]$ and $f'\in\mathcal{F}_A[V_1+\{\ast\}]$. Then $A\mapsto\{\ast\}\circ_{\ast} f= f$ and $f'\circ_{\ast} A\mapsto \{v\}= (\ast\mapsto v )\circ f'$.
\end{itemize}
\end{proof}
\begin{lemma}
\label{oppol}
Let $A=\{a_1,\dots\}$ be a set, $V$, $V_1$ and $V_2$ pairwise disjoint finite sets.
\begin{itemize}
\item If $h\in A\text{-}MHG[V_1+\{\ast_1,\ast_2\}]$ and $f_1\in \mathcal{F}_A[V_1]$ and $f_2\in \mathcal{F}_A[V_2]$ then $h|_{\{\ast_{1a}\leftarrow f_1(a)\}_{a\in A}}|_{\{\ast_{2a}\leftarrow f_2(a)\}_{a\in A}} = h|_{\{\ast_{2a}\leftarrow f_2(a)\}_{a\in A}}|_{\{\ast_{1a}\leftarrow f_1(a)\}_{a\in A}}$.
\item If $h\in A\text{-}MHG[V_1+\{\ast_1\}]$ and $f_1\in \mathcal{F}_A[V_1+\{\ast_2\}]$ and $f_2\in \mathcal{F}_A[V_2]$ then $h|_{\{\ast_{1a}\leftarrow f_1(a)\}_{a\in A}}|_{\{\ast_{2a}\leftarrow f_2(a)\}_{a\in A}} = h|_{\{\ast_{1a}\leftarrow f_1\circ_{\ast_2} f_2(a)\}_{a\in A}}$
\end{itemize}
\end{lemma}
\begin{proof}
This is just saying that the composition of multivariate polynomials is "symmetric" and associative.
\begin{itemize}
\item \begin{align*}
h_1(\dots, \ast_{1a_1},\dots,\ast_{2a_1},\dots)&|_{\{\ast_{1a}\leftarrow f_1(a)\}_{a\in A}}|_{\{\ast_{2a}\leftarrow f_2(a)\}_{a\in A}} \\
&= h_1(\dots, \sum_{v\in f_1(a_1)}v_{a_1},\dots, \ast_{2a_1},\dots)|_{\{\ast_{2a}\leftarrow f_2(a)\}_{a\in A}} \\
&= h_1(\dots, \sum_{v\in f_1(a_1)}v_{a_1},\dots, \sum_{v\in f_2(a_1)}v_{a_1},\dots) \\
&= h_1(\dots, \ast_{1a_1},\dots, \sum_{v\in f_2(a_1)}v_{a_1},\dots)|_{\{\ast_{1a}\leftarrow f_1(a)\}_{a\in A}} \\
&= h_1(\dots, \ast_{1a_1},\dots,\ast_{2a_1},\dots)|_{\{\ast_{2a}\leftarrow f_2(a)\}_{a\in A}}|_{\{\ast_{1a}\leftarrow f_1(a)\}_{a\in A}}
\end{align*}
\item \begin{align*}
h_1(\dots,\ast_{1a_1},\dots)&|_{\{\ast_{1a}\leftarrow f_1(a)\}_{a\in A}}|_{\{\ast_{2a}\leftarrow f_2(a)\}_{a\in A}} \\
&= h_1(\dots, \sum_{v\in f_1(a_1)}v_{a_1},\dots)|_{\{\ast_{2a}\leftarrow f_2(a)\}_{a\in A}} \\
&= h_1(\dots, \sum_{v\in f_1(a_1)\setminus\{\ast_2\}}v_{a_1} + \delta_{\ast_2\in f_1(a_1)}\sum_{v\in f_2(a_1)}v_{a_1},\dots) \\
&= h_1(\dots, \sum_{v\in f_1\circ_{\ast_2}f_2(a_1)}v_{a_1},\dots) \\
&= h_1(\dots,\ast_{1a_1},\dots)|_{\{\ast_{1a}\leftarrow f_1\circ_{\ast_2}f_2(a)\}_{a\in A}}
\end{align*}
where $\delta_{\ast_2\in f_1(a_1)} =1$ if $\ast_2\in f_1(a_1)$ and $\delta_{\ast_2\in f_1(a_1)} =0$ else.
\end{itemize}
\end{proof}
\begin{theorem}
The partial product $\circ_{\ast}$ and the morphism $e$ are such that the diagrams of Proposition \ref{pp} commute and hence define an operad structure on $\Bbbk A\text{-}MHG\times\mathcal{F}_A$ as well as all its subspecies stable under partial product.
\end{theorem}
\begin{proof}
We must first show that $\circ_{\ast}$ is a morphism of species. Let $V_1$ and $V_2$ be two finite disjoint sets, $(h_1,f_1)\in (A\text{-}MHG\times \mathcal{F}_A)'[V_1]$ and $(h_2,f_2)\in (A\text{-}MHG\times \mathcal{F}_A)[V_2]$ and $\sigma: V_1\sqcup V_2\rightarrow V$ a bijection. Then,
\begin{align*}
(A\text{-}MHG\times\mathcal{F}_A)[\sigma]&((h_1,f_1)\circ_{\ast}(h_2,f_2)) \\
&= (A\text{-}MHG\times\mathcal{F}_A)[\sigma]((h_1|_{\{\ast_a\leftarrow f_2(a)\}_{a\in A}}\oplus h_2, f_1\circ_{\ast}f_2) \\
&= (A\text{-}MHG[\sigma](h_1|_{\{\ast_a\leftarrow f_2(a)\}_{a\in A}}\oplus h_2), \mathcal{F}_A[\sigma](f_1\circ_{\ast} f_2)) \\
&= (A\text{-}MHG'[\sigma_{|V_1}](h_1)|_{\{\ast_a\leftarrow \sigma_{|V_2}(f_2(a))\}_{a\in A}}\oplus A\text{-}MHG[\sigma_{|V_2}](h_2), \mathcal{F}_A'[\sigma_{|V_1}](f_1)\circ_{\ast}\mathcal{F}_A[\sigma_{|V_2}](f_2)) \\
&= (A\text{-}MHG\times\mathcal{F}_A)'[\sigma_{}]((h_1,f_1)) \circ_{\ast}(A\text{-}MHG\times\mathcal{F}_A)[\sigma]((h_2,f_2))
\end{align*}
Let now be $V_1$, $V_2$ and $V_3$ three disjoint sets and note $A=\{a_1,\dots\}$.
\begin{itemize}
\item Let be $(h_1,f_1)\in (A\text{-}MHG\times \mathcal{F}_A)[V_1+\{\ast_1,\ast_2\}]$, $(h_2,f_2)\in (A\text{-}MHG\times \mathcal{F}_A)[V_2]$ and $(h_3,f_3)\in(A\text{-}MHG\times \mathcal{F}_A)[V_3]$. Then:
\begin{align*}
((h_1,f_1)&\circ_{\ast_1}(h_2,f_2))\circ_{\ast_2} (h_3,f_3) \\
&= (h_1|_{\{\ast_{1a}\leftarrow f_2(a)\}_{a\in A}}\oplus h_2, f_1\circ_{\ast_1}f_2)\circ_{\ast_2}(h_3,f_3) \\
&= (h_1|_{\{\ast_{1a}\leftarrow f_2(a)\}_{a\in A}}|_{\{\ast_{2a}\leftarrow f_3(a)\}_{a\in A}}\oplus h_2|_{\{\ast_{2a}\leftarrow f_3(a)\}_{a\in A}}\oplus h_3, (f_1\circ_{\ast_1}f_2)\circ_{\ast_2}f_3) \\
&= (h_1|_{\{\ast_{2a}\leftarrow f_3(a)\}_{a\in A}}|_{\{\ast_{1a}\leftarrow f_2(a)\}_{a\in A}}\oplus h_3|_{\{\ast_{1a}\leftarrow f_2(a)\}_{a\in A}}\oplus h_2, (f_1\circ_{\ast_2}f_3)\circ_{\ast_1}f_2) \\
&= (h_1|_{\{\ast_{2a}\leftarrow f_3(a)\}_{a\in A}}\oplus h_3, f_1\circ_{\ast_2}f_3)\circ_{\ast_1}(h_2,f_2) \\
&= ((h_1,f_1)\circ_{\ast_2}(h_3,f_3))\circ_{\ast_1} (h_2,f_2),
\end{align*}
where the third equality comes from Lemma \ref{opfunc} and Lemma \ref{oppol}.
\item Let be $(h_1,f_1)\in (A\text{-}MHG\times \mathcal{F}_A)[V_1+\{\ast_1\}]$, $(h_2,f_2)\in (A\text{-}MHG\times \mathcal{F}_A)[V_2+\{\ast_2\}]$ and $(h_3,f_3)\in(A\text{-}MHG\times \mathcal{F}_A)[V_3]$. Then:
\begin{align*}
((h_1,f_1)&\circ_{\ast_1}(h_2,f_2))\circ_{\ast_2} (h_3,f_3) \\
&= (h_1|_{\{\ast_{1a}\leftarrow f_2(a)\}_{a\in A}}\oplus h_2, f_1\circ_{\ast_1}f_2)\circ_{\ast_2}(h_3,f_3) \\
&= (h_1|_{\{\ast_{1a}\leftarrow f_2(a)\}_{a\in A}}|_{\{\ast_{2a}\leftarrow f_3(a)\}_{a\in A}}\oplus h_2|_{\{\ast_{2a}\leftarrow f_3(a)\}_{a\in A}}\oplus h_3, (f_1\circ_{\ast_1}f_2)\circ_{\ast_2}f_3) \\
&= (h_1|_{\{\ast_{1a}\leftarrow f_2\circ_{\ast_2} f_3(a)\}_{a\in A}}\oplus h_2|_{\{\ast_{2a}\leftarrow f_3(a)\}_{a\in A}}\oplus h_3, f_1\circ_{\ast_1}(f_2\circ_{\ast_2}f_3)) \\
&= (h_1,f_1)\circ_{\ast_1}((h_2, f_2)\circ_{\ast_2}(h_3,f_3)),
\end{align*}
where the third equality comes from Lemma \ref{opfunc} and Lemma \ref{oppol}.
\item Let $v\not\in V_1$ and $(h,f)\in (A\text{-}MHG\times \mathcal{F}_A)[V_1]$ and $(h',f')\in (A\text{-}MHG\times \mathcal{F}_A)[V_1+\{\ast\}]$. Then $(\empty_{\{\ast\}},A\mapsto\{\ast\})\circ_{\ast} (h,f) = (h,f)$ and $(h',f')\circ_{\ast}(\emptyset_{\{v\}}, A\mapsto \{v\}) = A\text{-}MHG[\ast\mapsto v](h',f')$
\end{itemize}
\end{proof}
\section{Extending PreLie}
\begin{lemma}
Let $A$ be a set. The set sub-species $\mathcal{F}_A^{max}$ and $\mathcal{F}_A^{sing}$ of $\mathcal{F}_A$ defined by $\mathcal{F}_A^{max}[V] = \{f:a\in A\mapsto V\}$ and $\mathcal{F}_A^{sing}[V] = \{f:A\mapsto \{v\}\,|\,v\in V\}$ are stable under partial product and contains $e_{\{v\}}(v)$ for all singleton $\{v\}$ and are hence set sub-operads of $\mathcal{F}_A$.
Let $A$ and $B$ be two disjoint sets and $\mathcal{F}_A^{sub}$ be a sub-operad of $\mathcal{F}_A$ and $\mathcal{F}_B^{sub}$ be a sub-operad of $\mathcal{F}_B$. Then the set species $\mathcal{F}_A^{sub}\uplus\mathcal{F}_B^{sub}$ defined by $\mathcal{F}_A^{sub}\uplus\mathcal{F}_B^{sub}[V] = \{f\uplus g\,|\, f\in\mathcal{F}_A^{sub}, g\in\mathcal{F}_B^{sub}\}$ , where $f\uplus g: a\in A\sqcup B \mapsto \delta_{a\in A}f(a)+\delta_{a\in B}g(a)$, is a sub-operad of $\mathcal{F}_{A\sqcup B}$.
\end{lemma}
\begin{proof}
By definition of $e$ and $\mathcal{F}_A^{max}$ we have that $\mathcal{F}_A^{max}[\{v\}] = \mathcal{F}_A^{sing}[\{V\}] = \{e_{\{v\}}(v)\}$. Let $V_1$ and $V_2$ be two disjoint sets and $\mathcal{F}_A^{max}[V_1+\{\ast\}] =\{f_1\}$ and $\mathcal{F}_A^{max}[V_2] = \{f_2\}$. Then for all $a\in A$, $\ast\in f_1(a)$ and hence $f_1\circ_{\ast} f_2(a) = f_1(a)\setminus\{\ast\} + f_2(a) = V_1 +V_2$. Let $f\in\mathcal{F}_A[V_1+\{\ast\}]$ and $g\in\mathcal{F}_A[V_2]$. Then remarking that for all $a\in A$, $|f\circ_{\ast}g(a)| = |f(a)|$ or $|f\circ_{\ast}g(a)| = |f(a)|-1+|g(a)|$ is enough to conclude that $\mathcal{F}_A^{sing}$ is stable under partial product.
Since $A$ and $B$ are disjoint, the function $a\in A\sqcup B \mapsto \delta_{a\in A}\delta_{a\in B}$ is the null function hence for $V_1$ and $V_2$ two disjoint sets and $f_1\in\mathcal{F}_{A}^{sub}[V_1+\{\ast\}]$, $f_2\in\mathcal{F}_{A}^{sub}[V_2]$, $g_1\in\mathcal{F}_{B}^{sub}[V_1+\{\ast\}]$ and $g_2\in\mathcal{F}_{B}^{sub}[V_2]$ we have that
$f_1\uplus g_1\circ_{\ast} f_2\uplus g_2 = f_1\circ_{\ast}f_2\uplus g_1\circ_{\ast}g_2$ which conclude this proof
\end{proof}
Given a set species $S$ the \textit{pointing of $S$} is the set species $S^{\bullet}$ given by $S^{\bullet}[V] = S[V]\times V$
\begin{definition}[Operad of multi-hypergraphs and oriented multi-hypergraphs]
The species $\Bbbk MHG$ is isomorphic to $\Bbbk (\{0\}\text{-}MHG\times\mathcal{F}_{\{0\}}^{max})$. This second species being stable under $\circ_{\ast}$ and containing $e(X)$, this gives us an operad structure on $\Bbbk MHG$.
We call \textit{oriented multi-hypergraph} the elements of $\{s,t\}\text{-}MHG$. The ends augmented with $s$ are called \textit{sources} and the one augmented with $t$ \textit{targets}. An \textit{orientation} of a multi-hypergraph is then a $\{s,t\}$-augmentation and we note $MHG_{or}$ this set species.
The vector species $\Bbbk MHG_{or}$ has an operad structure given by its isomorphism with $\Bbbk \{s,t\}\text{-}MHG\times\mathcal{F}_{s,t}^{max}$. We note $\iota_{MG}: MG \hookrightarrow MG_{or}$ the monomorphism of operads which sends every multigraph on its orientation where all the ends are targets.
The vector species $\Bbbk MHG_{or}^{\bullet}$ has an operad structure given by its isomorphism with $\Bbbk (\{s,t\}\text{-}MHG\times\mathcal{F}_{\{s\}}^{sing}\uplus\mathcal{F}_{\{t\}}^{max})$.
We have analogous definitions for $HG$, $MG$, $G$ and $F$
\end{definition}
Note that the notion of orientation for a graph differs from the usual one where each edge has exactly one source and one target.
The partial product on $\Bbbk MHG_{or}^{\bullet}$ acts the following way: for $V_1$ and $V_2$ two disjoint sets, $(g_1,v_1)\in MHG^{\bullet}[V_1+\{\ast\}]$ and $(g_2,v_2)\in MHG^{\bullet}[V_2]$ we have:
$$ (g_1,v_1)\circ_{\ast} (g_2,v_2) = (g_1|_{\ast_s \leftarrow v_2,\, \ast_t \leftarrow\sum V_2}\oplus g_2, v_1|_{\ast \leftarrow v_2}).$$
\vspace{1cm}
Let $S$ one of the set species $HMG$, $HG$, $MG$ or $G$. We note $S_c$ the set subspecies of $S$ of connected elements, $S_{orc}$ the set subspecies of $S_{or}$ of connected elements. We note $T=F_c$ the set species of trees and $T_{or}$ the set species of oriented trees.
Let $V$ be a finite set. Given a tree $t\in T[V]$ and a vertex $r\in V$, we note $t_r\in T_{or}$ the tree with shape $t$ and rooted in $r$ i.e the orientation of $t$ such that for each edge $e$ in $t$ the closest vertex to $v$ in $e$ is a target and the other one a source. $\text{PreLie}$ is an operad structure on $\Bbbk T^{\bullet}$ and we have an operad monomorphism $\iota_{\text{PreLie}}:\text{PreLie} \hookrightarrow \Bbbk T_{or}^{\bullet}$ given by $(t,r)\mapsto (t_r,r)$.
\begin{lemma}
\label{prelie}
The monomorphism of vector species given by, for $V$ a finite set:
\begin{align*}
\phi_V: \Bbbk T[V] &\hookrightarrow \text{PreLie}[V] \\
t &\mapsto \sum_{r\in V} (t,r)
\end{align*}
is a morphism of operads.
\end{lemma}
\begin{proof}
Let $t\in T[V]$ be a tree and $r,v\in V$. We note $n_t(v)$ the set of neighbours of $v$ in $t$ and $c_{t,r}(v)$ the set of children of $v$ in $t_r$. If $r\not = v$, we also note $p_{t,r}(v)$ the parent of $v$ in $t_r$. Let $V_1$ and $V_2$ be two disjoint sets and $t_1\in T[V_1+\{\ast\}]$ and $t_2\in T[V_2]$. We have:
\begin{align*}
\phi_{V_1}(t_1)\circ_{\ast} \phi_{V_2}(t_2) &= \sum_{r_1\in V_1+\{\ast\}} (t_1,r_1) \circ_{\ast} \sum_{r_2\in V_2}(t_2,r_2) \\
&= \sum_{r_1\in V_1+\{\ast\}}\sum_{r_2\in V_2} (t_1,r_1)\circ_{\ast} (t_2,r_2) \\
&= \sum_{r_1\in V_1}\sum_{r_2\in V_2} \left(t_1\cap V_1^2\oplus p_{t_1,r_1}(\ast)r_2\oplus t_2 \oplus \bigoplus_{v\in c_{t_1,r_1}(\ast)} \left(\sum V_2\right)v, r_1\right) \\
&\quad + \sum_{r_2\in V_2}\left(t_1\cap V_1^2\oplus t_2 \oplus \bigoplus_{v\in c_{t_1,\ast}(\ast)} \left(\sum V_2\right)v,r_2\right) \\
&= \sum_{r_1\in V_1} \left(t_1\cap V_1^2\oplus p_{t_1,r_1}(\ast)\left(\sum V_2\right) \oplus t_2 \oplus \bigoplus_{v\in c_{t_1,r_1}(\ast)} \left(\sum V_2\right)v, r_1\right) \\
&\quad+ \sum_{r_2\in V_2} \left(t_1\cap V_1^2\oplus t_2 \oplus \bigoplus_{v\in c_{t_1,\ast}(\ast)} \left(\sum V_2\right)v,r_2\right) \\
&= \sum_{r\in V_1+V_2}\left(t_1\cap V_1^2\oplus\bigoplus_{v\in n_{t_1}(\ast)}\left(\sum V_2\right)v\oplus t_2,r\right) \\
&= \sum_{r\in V_1+V_2} \left(t_1|_{\ast \leftarrow \sum V_2}\oplus t_2,r\right) \\
&= \phi_{V_1+V_2}(t_1\circ_{\ast} t_2)
\end{align*}
\end{proof}
Let $V$ be a set, $g\in MG_c[V]$ a multigraph over $V$, $r\in V$ and $t\in T[V]$ a spaning tree of $g$. Let $\overrightarrow{g}^{(t,r)}\in MG_{orc}$ be the orientation of $g$ defined by $\overrightarrow{g}^{(t,r)}=t_{r}\oplus\iota_{MG}(g\setminus t)$.
We define $\Bbbk \op_2\subset \Bbbk\op_1\subset\Bbbk ST$ three sub-species of $\Bbbk MG_{orc}^{\bullet}$ by, for $V$ a finite set:
\begin{itemize}
\item $ST[V]=\{(\overrightarrow{g}^{(t,r)},r)\,|\,g\in MG_c[V], r\in V \text{ and $t$ a spanning tree of $g$}\}$,
\item $\op_1[V] = \{\sum_{r\in V} \overrightarrow{g}^{(t(r),r)}\,|\, g\in MG_c[V]\text{ and for each $r$, $t(r)$ a spanning tree of $g$}\}$,
\item $\op_2[V]=\{\overrightarrow{g}^{(t_1,r)}-\overrightarrow{g}^{(t_2,r)}\,|\,g\in MG_c[V],r\in V \text{ and $t_1$ and $t_2$ two spanning trees of $g$}\}$.
\end{itemize}
\begin{lemma}
\label{lemmfond}
We have the following:
\begin{itemize}
\item $\Bbbk ST$ is a sub-operad of $\Bbbk MG_{orc}^{\bullet}$ isomorphic to $\text{PreLie}\times \Bbbk MG$.
\item $\Bbbk \op_1$ is a sub-operad of $\Bbbk ST$.
\item $\Bbbk\op_2$ is an ideal of $\Bbbk\op_1$.
\end{itemize}
\end{lemma}
\begin{proof}
\begin{itemize}
\item We have a species isomorphism $\phi:\text{PreLie}\times\Bbbk MG\stackrel{\sim}\longrightarrow\Bbbk ST$ given by $\phi_V((t,r),g) = (\overrightarrow{t\oplus g}^{(t,r)},r)$ and $\phi_V^{-1}((\overrightarrow{g}^{(t,r)},r)) = ((t,r),g\setminus t)$. Since $\iota_{\text{PreLie}}$ and $\iota_{MG}$ are both morphisms of operads, this is a morphism of operad, hence the result.
\item Let $V_1$ and $V_2$ be two disjoint sets, $g_1\in MG_c[V_1+\{\ast\}]$ and $g_2\in MG_c[V_2]$ be two connected multigraphs and for each $v\in V_1+\{\ast\}$, $t(v)$ a spanning tree of $g_1$ and for each $v\in V_2$, $t(v)$ a spanning tree of $g_2$. We have that:
\begin{align*}
\sum_{r_1\in V_1+\{\ast\}} \overrightarrow{g_1}^{(t(r_1),r_1)} &\circ_{\ast} \sum_{r_2\in V_2} \overrightarrow{g_2}^{(t(r_2),r_2)} = \sum_{r_1\in V_1+\{\ast\}}\sum_{r_2\in V_2} \overrightarrow{g_1}^{(t(r_1),r_1)}\circ_{\ast} \overrightarrow{g_2}^{(t(r_2),r_2)} \\
&= \sum_{r_1\in V_1+\{\ast\}}\sum_{r_2\in V_2} \left(\overrightarrow{g_1}^{(t(r_1),r_1)}|_{\ast_s\leftarrow r_2,\, \ast_t\leftarrow\sum V_2}\oplus \overrightarrow{g_2}^{(t(r_2),r_2)}, r_1|_{\ast\leftarrow r_2}\right)\\
\end{align*}
Applying $U\times\id$, with $U$ the forgetful functor gives us:
\begin{align*}
&\sum_{r_1\in V_1+\{\ast\}}\sum_{r_2\in V_2} (t(r_1)\cap V_1^2\oplus p_{t(r_1),r_1}(\ast)r_2\oplus t(r_2) \oplus \bigoplus_{v\in c_{t(r_1),r_1}(\ast)} v\left(\sum V_2\right) \oplus g_1\setminus t(r_1)\cap V_1^2\\
&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\bigoplus_{v\in n_{g_1\setminus t(r_1)}(\ast)}v\left(\sum V_2\right)\oplus g_2, r_1|_{\ast\leftarrow r_2})\\
&= \sum_{r_1\in V_1}\sum_{r_2\in V_2} \left(g_1\cap V_1^2\oplus p_{t(r_1),r_1}(\ast)r_2\oplus g_2 \oplus \bigoplus_{v\in c_{t(r_1),r_1}(\ast)} v\left(\sum V_2\right)\oplus\bigoplus_{v\in n_{g_1\setminus t(r_1)}(\ast)}v\left(\sum V_2\right), r_1\right)\\
&\qquad\ \,+ \sum_{r_2\in V_2} \left(g_1\cap V_1^2\oplus g_2 \oplus \bigoplus_{v\in c_{t(\ast),\ast}(\ast)} \left(\sum V_2\right)v\oplus\bigoplus_{v\in n_{g_1\setminus t(\ast)}(\ast)}v\left(\sum V_2\right), r_2\right)\\
&= \sum_{r_1\in V_1} \left(g_1\cap V_1^2\oplus p_{t(r_1),r_1}(\ast)\left(\sum V_2\right)\oplus g_2 \oplus \bigoplus_{v\in c_{t(r_1),r_1}(\ast)} v\left(\sum V_2\right)\oplus\bigoplus_{v\in n_{g_1\setminus t(r_1)}(\ast)}v\left(\sum V_2\right), r_1\right)\\
&+\, \sum_{r_2\in V_2} \left(g_1\cap V_1^2\oplus g_2 \oplus \bigoplus_{v\in n_{g_1}(\ast)} \left(\sum V_2\right)v, r_2\right)\\
&=\sum_{r\in V_1+V_2} \left(g_1\cap V_1^2\oplus g_2 \oplus\bigoplus_{v\in n_{g_1}(\ast)} v\left(\sum V_2\right), r\right) \\
&= \sum_{r\in V_1+V_2} (g_1\circ_{\ast}g_2,r).
\end{align*}
To conclude remark that for every finite set $V$, $\Bbbk\op_1[V]$ can be seen as the reciprocal image of $\Bbbk\{\sum_{v\in V}(g,v)\,|\,g\in MG_c[V]\}$ by $U\times\id: \Bbbk ST\rightarrow \Bbbk MG_c^{\bullet}$.
\item It is easy to see that $\Bbbk\op_2$ is a left ideal of $\Bbbk ST$ and hence of $\Bbbk\op_1$. Let $V_1$ and $V_2$ be two disjoint finite sets, $g_1\in MG_c[V_1+\{\ast\}]$ and $g_2\in MG_c[V_2]$, $r\in V_1$, $t$ a spanning tree of $g_1$ and for every $v\in V_2$, $t(v)$ a spanning tree of $g_2$. Then by recuperating the calculations of the preceding point, we have that $U\times\id(\overrightarrow{g_1}^{(t,r)}\circ_{\ast}\sum_{v\in V_2} \overrightarrow{g_2}^{(t(v),v))}$ is of the form $(g_1\circ_{\ast} g_2, r)$ is $r\not = \ast$ and of the form $\sum_{v\in V_2} (g_1\circ_{\ast} g_2, v)$ else. In both case it doesn't depend on $t$ which concludes this proof.
\end{itemize}
\end{proof}
We can see $\text{PreLie}$ as a sub operad of $ST$ by assimilating it to its image by $\iota_{\text{PreLie}}$. The image of the operad morphism $\phi$ of Lemma \ref{prelie} is then $\Bbbk\op_1\cap\text{PreLie}$ and we have that $\Bbbk\op_2\cap\text{PreLie} = \{0\}$ and hence $\Bbbk\op_1\cap\text{PreLie}/\Bbbk\op_2\cap\text{PreLie} = \Bbbk\op_1\cap\text{PreLie}$.
\begin{proposition}
The operad isomorphism $\phi: \Bbbk T \stackrel{\sim}\longrightarrow \Bbbk \op_1\cap\text{PreLie}$ extends to an operad isomorphism $\phi: \Bbbk MG_c \stackrel{\sim}\longrightarrow \Bbbk\op_1/\Bbbk\op_2$ given by, for $V$ a finite set:
\begin{align*}
\phi_V: \Bbbk MG_c[V] &\stackrel{\sim}\longrightarrow \Bbbk\op_1/\Bbbk\op_2[V]\\
g &\longmapsto \sum_{r\in V}\overrightarrow{g}^{(t(r),r)}
\end{align*}
where for each $r\in V$, $t(r)$ is a spanning tree of $g$.
\end{proposition}
\begin{proof}
It is a direct consequence of the third point and the proof of the second point in Lemma \ref{lemmfond}.
\end{proof}
\end{document}