|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "'''\n", |
| 10 | + "LOAN DATASET\n", |
| 11 | + "'''\n", |
| 12 | + "\n", |
| 13 | + "# required libraries\n", |
| 14 | + "import pandas as pd\n", |
| 15 | + "from sklearn.linear_model import LogisticRegression\n", |
| 16 | + "from sklearn.model_selection import train_test_split\n", |
| 17 | + "from sklearn.preprocessing import LabelEncoder\n", |
| 18 | + "from sklearn.metrics import accuracy_score\n", |
| 19 | + "\n", |
| 20 | + "\n", |
| 21 | + "# read the dataset\n", |
| 22 | + "data = pd.read_csv('train_ctrUa4K.csv')\n", |
| 23 | + "print(data.head())\n", |
| 24 | + "\n", |
| 25 | + "print('\\n\\nColumn Names\\n\\n')\n", |
| 26 | + "print(data.columns)\n", |
| 27 | + "\n", |
| 28 | + "#label encode the target variable\n", |
| 29 | + "encode = LabelEncoder()\n", |
| 30 | + "data.Loan_Status = encode.fit_transform(data.Loan_Status)\n", |
| 31 | + "\n", |
| 32 | + "# drop the null values\n", |
| 33 | + "data.dropna(how='any',inplace=True)\n", |
| 34 | + "\n", |
| 35 | + "\n", |
| 36 | + "# train-test-split \n", |
| 37 | + "train , test = train_test_split(data,test_size=0.2,random_state=0)\n", |
| 38 | + "\n", |
| 39 | + "\n", |
| 40 | + "\n", |
| 41 | + "# seperate the target and independent variable\n", |
| 42 | + "train_x = train.drop(columns=['Loan_ID','Loan_Status'],axis=1)\n", |
| 43 | + "train_y = train['Loan_Status']\n", |
| 44 | + "\n", |
| 45 | + "test_x = test.drop(columns=['Loan_ID','Loan_Status'],axis=1)\n", |
| 46 | + "test_y = test['Loan_Status']\n", |
| 47 | + "\n", |
| 48 | + "# encode the data\n", |
| 49 | + "train_x = pd.get_dummies(train_x)\n", |
| 50 | + "test_x = pd.get_dummies(test_x)\n", |
| 51 | + "\n", |
| 52 | + "print('shape of training data : ',train_x.shape)\n", |
| 53 | + "print('shape of testing data : ',test_x.shape)\n", |
| 54 | + "\n", |
| 55 | + "# create the object of the model\n", |
| 56 | + "model = LogisticRegression()\n", |
| 57 | + "\n", |
| 58 | + "model.fit(train_x,train_y)\n", |
| 59 | + "\n", |
| 60 | + "predict = model.predict(test_x)\n", |
| 61 | + "\n", |
| 62 | + "print('Predicted Values on Test Data',predict)\n", |
| 63 | + "\n", |
| 64 | + "print('\\n\\nAccuracy Score on test data : \\n\\n')\n", |
| 65 | + "print(accuracy_score(test_y,predict))\n" |
| 66 | + ] |
| 67 | + } |
| 68 | + ], |
| 69 | + "metadata": { |
| 70 | + "kernelspec": { |
| 71 | + "display_name": "Python 3", |
| 72 | + "language": "python", |
| 73 | + "name": "python3" |
| 74 | + }, |
| 75 | + "language_info": { |
| 76 | + "codemirror_mode": { |
| 77 | + "name": "ipython", |
| 78 | + "version": 3 |
| 79 | + }, |
| 80 | + "file_extension": ".py", |
| 81 | + "mimetype": "text/x-python", |
| 82 | + "name": "python", |
| 83 | + "nbconvert_exporter": "python", |
| 84 | + "pygments_lexer": "ipython3", |
| 85 | + "version": "3.8.3" |
| 86 | + } |
| 87 | + }, |
| 88 | + "nbformat": 4, |
| 89 | + "nbformat_minor": 4 |
| 90 | +} |
0 commit comments