|
| 1 | + |
| 2 | +import cv2 |
| 3 | +import numpy as np |
| 4 | +import imutils |
| 5 | +import os |
| 6 | + |
| 7 | +# feature matching + text on screen |
| 8 | + |
| 9 | +#give the path of video |
| 10 | +cap = cv2.VideoCapture('C:\\Users\\hp\\electric meter 3.mp4') |
| 11 | + |
| 12 | +#give the path of template images |
| 13 | +img1 = cv2.imread("C:\\Users\\hp\\Template\\temp\\A-p(1).png", cv2.IMREAD_GRAYSCALE) # query image1 |
| 14 | +img2 = cv2.imread("C:\\Users\\hp\\Template\\temp\\kwh temp 3.png", cv2.IMREAD_GRAYSCALE) # query image2 |
| 15 | +img5 = cv2.imread("C:\\Users\\hp\\Template\\temp\\kw better.png", cv2.IMREAD_GRAYSCALE) # query image3 |
| 16 | +img7 = cv2.imread('C:\\Users\\hp\\Template\\V temp.png',0) |
| 17 | + |
| 18 | +count = 0 |
| 19 | + |
| 20 | +# Resizing the template images if required |
| 21 | + |
| 22 | +#w,h = template.shape[::-1] |
| 23 | +#for scale in np.linspace(.2, 1.0, 20)[::-1]: |
| 24 | +#resized1 = imutils.resize(template, width = int(template.shape[1] * .35)) |
| 25 | +#r = template.shape[1] / float(resized1.shape[1]) |
| 26 | +# img1 = imutils.resize(img1, height=50) |
| 27 | +# img2 = imutils.resize(img2, height=50) |
| 28 | +# img5 = imutils.resize(img5, height=50) |
| 29 | + |
| 30 | +# Feature detection |
| 31 | +sift = cv2.xfeatures2d.SIFT_create() |
| 32 | +kp_image1, desc_image1 = sift.detectAndCompute(img1, None) |
| 33 | +kp_image2, desc_image2 = sift.detectAndCompute(img2, None) |
| 34 | +kp_image5, desc_image5 = sift.detectAndCompute(img5, None) |
| 35 | +kp_image7, desc_image7 = sift.detectAndCompute(img7, None) |
| 36 | + |
| 37 | +# Feature matching :depending upon system use or the next 3 commented out lines |
| 38 | +#index_params = dict(algorithm=0, trees=5) |
| 39 | +#search_params = dict() |
| 40 | +#flann = cv2.FlannBasedMatcher(index_params, search_params) |
| 41 | +bf = cv2.BFMatcher() |
| 42 | + |
| 43 | +while True: |
| 44 | + ret, frame = cap.read() |
| 45 | + |
| 46 | + (h, w) = frame.shape[:2] |
| 47 | + center = (w / 2, h / 2) |
| 48 | + |
| 49 | +# rotate the image by 270 degrees |
| 50 | + M = cv2.getRotationMatrix2D(center, 270, 1.0) |
| 51 | + rotated = cv2.warpAffine(frame, M, (w, h)) |
| 52 | + blurred_frame = cv2.GaussianBlur(rotated, (5, 5), 0) |
| 53 | + hsv = cv2.cvtColor(blurred_frame, cv2.COLOR_BGR2HSV) |
| 54 | + |
| 55 | + lower_green = np.array([35, 100, 20]) |
| 56 | + upper_green = np.array([85, 255, 255]) |
| 57 | + mask = cv2.inRange(hsv, lower_green, upper_green) |
| 58 | + |
| 59 | + _, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) |
| 60 | + |
| 61 | + #find the biggest area |
| 62 | + c = max(contours, key = cv2.contourArea) |
| 63 | + |
| 64 | + x,y,w,h = cv2.boundingRect(c) |
| 65 | + |
| 66 | + # draw the reading area contour (in blue) |
| 67 | + im=cv2.rectangle(rotated,(x,y),(x+w,y+h),(255,0,0),2) |
| 68 | + roi=im[y:y+h,x:x+w] |
| 69 | + # resized = imutils.resize(roi, height=450) |
| 70 | + grayframe = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) #trainimage |
| 71 | + |
| 72 | + kp_grayframe, desc_grayframe = sift.detectAndCompute(grayframe, None) |
| 73 | + |
| 74 | + #if flann matcher is used : then flann.knnMatch() instead of bf.knnMatch |
| 75 | + matches1 = bf.knnMatch(desc_image1, desc_grayframe, k=2) |
| 76 | + matches2 = bf.knnMatch(desc_image2, desc_grayframe, k=2) |
| 77 | + matches5 = bf.knnMatch(desc_image5, desc_grayframe, k=2) |
| 78 | + matches7 = bf.knnMatch(desc_image7, desc_grayframe, k=2) |
| 79 | + |
| 80 | + good_points1 = [] |
| 81 | + for m, n in matches1: |
| 82 | + if m.distance < 0.8*n.distance: # 0.8 is the ideal value ..adjust according to need |
| 83 | + good_points1.append(m) |
| 84 | + |
| 85 | + good_points2 = [] |
| 86 | + for p, n in matches2: |
| 87 | + if p.distance < 0.8*n.distance: |
| 88 | + good_points2.append(p) |
| 89 | + |
| 90 | + good_points5 = [] |
| 91 | + for q, n in matches5: |
| 92 | + if q.distance < 0.8*n.distance: |
| 93 | + good_points5.append(q) |
| 94 | + |
| 95 | + good_points7 = [] |
| 96 | + for r, n in matches7: |
| 97 | + if r.distance < 0.8*n.distance: |
| 98 | + good_points7.append(r) |
| 99 | + |
| 100 | + img3 = cv2.drawMatches(img1, kp_image1, grayframe, kp_grayframe, good_points1, grayframe) |
| 101 | + img4 = cv2.drawMatches(img2, kp_image2, grayframe, kp_grayframe, good_points2, grayframe) |
| 102 | + img6 = cv2.drawMatches(img5, kp_image5, grayframe, kp_grayframe, good_points5, grayframe) |
| 103 | + img8 = cv2.drawMatches(img7, kp_image7, grayframe, kp_grayframe, good_points7, grayframe) |
| 104 | + |
| 105 | + height, width =img3.shape[:2] |
| 106 | + for m,n in matches1: |
| 107 | + if len(good_points1)>2: #adjust value of 2 according to video quality |
| 108 | + font=cv2.FONT_HERSHEY_SIMPLEX |
| 109 | + cv2.putText(grayframe,'A',(150,100),font,2,(255,255,255),3, cv2.LINE_AA) |
| 110 | + |
| 111 | + height, width =img4.shape[:2] |
| 112 | + for p,n in matches2: |
| 113 | + if len(good_points2)>20: |
| 114 | + #adjust the value of 20 according to the video quality .. lower the value if video quality is poor |
| 115 | + font=cv2.FONT_HERSHEY_SIMPLEX |
| 116 | + cv2.putText(grayframe,'KWH',(150,100),font,2,(255,255,255),3, cv2.LINE_AA) |
| 117 | + |
| 118 | + # storing the frame of kWh as an image in .jpg format |
| 119 | + count += 1 |
| 120 | + if count == 1 : |
| 121 | + cv2.imwrite(os.path.join('C:\\Users\\hp\\Template','kWh%d.png') % count,img4) |
| 122 | + |
| 123 | + |
| 124 | + height, width =img6.shape[:2] |
| 125 | + for q,n in matches5: |
| 126 | + if len(good_points5)>12: #adjust value of 12 according to video |
| 127 | + font=cv2.FONT_HERSHEY_SIMPLEX |
| 128 | + cv2.putText(grayframe,'KW',(150,100),font,2,(255,255,255),3, cv2.LINE_AA) |
| 129 | + |
| 130 | + height, width =img8.shape[:2] |
| 131 | + for r,n in matches7: |
| 132 | + if len(good_points7)>4: #adjust value of 4 according to video quality |
| 133 | + font=cv2.FONT_HERSHEY_SIMPLEX |
| 134 | + cv2.putText(grayframe,'V',(150,100),font,2,(255,255,255),3, cv2.LINE_AA) |
| 135 | + |
| 136 | + #cv2.imshow("Frame", rotated) |
| 137 | + #cv2.imshow("A", img3) |
| 138 | + #cv2.imshow("KWH", img4) |
| 139 | + #cv2.imshow("KW", img6) |
| 140 | + #cv2.imshow("V", img8) |
| 141 | + cv2.imshow("result",grayframe) |
| 142 | + |
| 143 | + key = cv2.waitKey(1) |
| 144 | + if key == 27: |
| 145 | + break |
| 146 | + |
| 147 | +cap.release() |
| 148 | +cv2.destroyAllWindows() |
0 commit comments